
BCC Presort | Label Studio

Database Prep: Guide to Input and Output Files

i

COPYRIGHT ©2021 BCC Software, LLC
75 Josons Drive
Rochester, NY 14623-3494

This manual and software are copyrighted by BCC Software. All rights are reserved and neither manual nor software
may be copied in any way without prior consent.

BCC Software and Label StudioBCC Presort are registered trademarks of BCC Software, LLC. Track N Trace,
BCC Software, and the BCC Software logo are trademarks of BCC Software in the United States and other countries.

TDbf software used under license. TDbf Copyright © 1991, 1999, Free Software Foundation, Inc. RapidJSON Copyright
(C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved. Borland, dBase, and Paradox are
registered trademarks of Borland International Incorporated. Microsoft, Windows, NT, MS, Access, Excel, and FoxPro
are registered trademarks of Microsoft Corp. Zip and Jaz are trademarks of Iomega Corporation. Adobe® and Adobe
PDF Library™ are trademarks or registered trademarks of Adobe Systems Inc. in the US and other countries. All printer
brands or other product names mentioned herein may be trademarks or registered trademarks of their respective
holders.

To the extent the software of BCC Software, LLC. described in this manual integrates data products and software of
the United States Postal Service, such as RDI, DPV®, LACSLink®, RDI®, NCOALink FSP®, NCOALink LSP® with ANKLink®,
DSF2®, eLOT®, SuiteLink®, AIS Products, Labeling Lists, National Zone Charts Matrix Product, and AMS API®), you agree
to be bound by the terms of the license agreements between BCC Software, LLC. and the United States Postal Ser-
vice.

BCC Software is a non-exclusive licensee of the USPS for the following: NCOALink Interface Developer and Distributor;
NCOALink® Full and Limited Service Provider Licensee; LACSLink, DPV, and RDI™. DSF2 services are provided by a non-
exclusive licensee of the United States Postal Service and/or a direct license..

Prices for BCC Software products and services are not established, controlled or approved by the United States
Postal Service or the United States Government.

For a list of trademarks owned by the United States Postal Service, please see Trademarks of the USPS: https://-
postalpro.usps.com/mnt/glusterfs/2018-03/Trademarks.pdf ⇨ .

The names, logos and international property rights of other companies regarding products and services remain the
property of their respective owners.

202012040255

https://postalpro.usps.com/mnt/glusterfs/2018-03/Trademarks.pdf
https://postalpro.usps.com/mnt/glusterfs/2018-03/Trademarks.pdf

Database Prep: Guide to Input and Output Files | ii

Contents

Introduction 1

Presort 1
Label Studio 1

Input files and input file results 2
Input files 2
Output files 3
Work files 3

Databases that the software can process 4
Supporting file types 4

Format files 4
Purposes of definition files 5
Supporting file requirements 6

Databases that Presort can process 7

dBASE3 and compatible databases 7
dBASE3 features that Presort supports 7
Nondestructive delete markings 7
dBASE3 input 8
dBASE3 output 8

Variable-length, delimited ASCII text files 10
Delimiters 10
Delimited input 11
Delimited output 11

Fixed-length ASCII and EBCDIC text files 12
Delimited vs. fixed-length 13
Fixed ASCII and EBCDIC input 13
Fixed ASCII and EBCDIC output 13

Format files for fixed-length ASCII and fixed-length EBCDIC 14

Introduction to format files 14
Matching input with a format file 14

Create format files 15
Lines 15
Spaces and field names 15
Text files 16
File name and location 16

Define fields in your format file 16
Topoffset field for file header 16
Character fields 16

Database Prep: Guide to Input and Output Files | iii

Numeric fields 17
Date fields 17
Logical fields 18
Packed numeric fields 18
Binary fields 19
Filler fields 19
End-of-record field (EOR) 20

Delimited format files for delimited ASCII 21

Introduction to delimited format files 21
Delimited format vs. format 21

Create delimited format files 22
Lines 22
Spaces and field names 22
Text 23
File name and location 23

Define fields in your delimited format file 23
Topoffset field for file header 23
Character fields 23
Numeric fields 24
Date fields 24
Logical fields 25
Maximum field length 25

Set up the delimiter characters 26
Defaults 26
Custom delimiters 27
Turn off a delimiter 27

ASCII code values 29

Definition files (DEF) 31

Introduction to definition files 31
Match input with a definition file 32
Create definition files 33

Database type 33
Field definitions 33
Typing 34
Text 34
Constants 34
Punctuation 35
Concatenators 36

Use PW fields for aliasing 37

Database Prep: Guide to Input and Output Files | iv

Changes in definition files 38

Choose contents of definition files 38
A single database 38
A single record 39

Follow a database through the software 41
Data quality 41
ACE 42
Match/Consolidate 43
Presort 44
Label Studio 45

Output files 46

Set up an output file 46
Use one of three methods 46

Overview of output file setup 47
Set the format of an output database 48

Clone 48
Clone and append 49
Define your own format 50

Place information in an output database 51
Clone 51
Clone and append 51
Select data yourself 52

Types of data available for output 52
Four options 52
Advanced options 53

Supporting files automatically created with an output database 54

Filter and function expressions 55

Expressions 55
Results of an expression 55

Filters and functions 55
Functions 56

Use filters to set criteria 56
Constants 56
PW fields 57
Database (DB) fields 57
Application (AP) fields 57
Data types 58

Operator words for combining functions 58
.And. 58

Database Prep: Guide to Input and Output Files | v

.Or. 59

.Not. 59
Nested functions 59

Reading nested functions 59
Example functions 60

Example 1 60
Example 2 61
Example 3 61
Example 4 62

Other operators 64
Arithmetic 64
String concatenation 65
Comparison 65
Miscellaneous 65

List of functions 66
abs(number) 66
alltrim(char) 66
asc(char) 66
at(char, char) 67
at(“,”,DB.Name) 67
cdow(date) 67
chrtran(char1 , char2 , char3) 67
chr(number) 68
cmonth(date) 68
ctod(char) 68
date() 69
day(date) 69
deleted() 69
dow(date) 69
dtoc(date) 69
dtos(date) 70
empty(char) 70
iif(logexpr, expr2 , expr3) 70
int(number) 71
isalpha(char) 71
isdigit(char) 71
islower(char) 71
isupper(char) 72
left(char, number) 72
len(char) 72
lower(char) 72
ltrim(char) 73

Database Prep: Guide to Input and Output Files | vi

max(number,number) 73
min(number, number) 73
mod(number,number) 73
month(date) 74
proper(char) 74
recno() 74
replicate (char, number) 74
right(char, number) 75
round (number, number) 75
rtrim(char) 75
space(number) 75
span(char, char) 76
str(number, [len,[decimal]]) 76
substr(char, start [,length] 76
time() 76
translated() 77
unassigned() 77
upper(char) 77
val(char) 77
year(date) 77

Summary of functions by purpose 78

Convert database types and format 81

Input files with different formats 81
The problem 81
The solution 82
The result 82

Input and output fields and data types 83
Preserve the data type 83
Convert the format automatically 83
Convert the data type automatically 84
Convert with a function 84

Convert ASCII and EBCDIC input to dBASE3 output 85
Packed numeric fields 85
Binary and filler fields 85
Logical fields 86
Delete field 87

Convert dBASE3 input to ASCII output 87
Delete mark 87
End-of-record mark 87

Create a delimited file with nonstandard delimiters 88

Database Prep: Guide to Input and Output Files | vii

Additional Resources 90

Documentation Updates Available Online 90
Knowledge Base 90
How to Contact Support 90

Database Prep: Guide to Input and Output Files | 1

Introduction
This manual is a training aid and reference document that explains how to prepare your databases
for Presort. We assume that you are familiar with your operating system, text editor, and database
manager or other list-management program.

Presort

Presorting is the task of sorting mail and preparing it in containers so that it can be transported
through the postal system. It’s called presorting because you sort the mail before you submit it to
the U.S. Postal Service (USPS) instead of paying them to sort it.

A presort scheme is a set of USPS rules for presorting. There are several schemes for each class of
mail and type of mail piece. Each scheme is linked with a particular type of container (trays, sacks, or
pallets) and a range of postage rates. When you run Presort, it plans for you how packages and con-
tainers are formed, according to the USPS scheme rules. Every package and container has a des-
tination—either a local office or a larger, central facility—and a label or mark that identifies that
destination. When it reaches its destination, the package or container is opened and processed—per-
haps for further routing, and eventually for delivery.

Label Studio

Label Studio is a design tool that takes your input files and outputs customized labels. It is a perfect
fit with our other database and mailing-list management and production products.

With Label Studio, you can set up your job file, set up your printers, design and print your labels
(address, container, pallet, or generic), and print your reports. In addition, you can split your output
into multiple output files by creating unit and/or sub-unit breaks.

Label Studio works with many different Windows and UNIX printer drivers and ink jet printer drivers,
or you can use a Generic Text driver.

Database Prep: Guide to Input and Output Files | 2

Input files and input file results

This section provides a brief overview of input, output, and work files, as well as the databases that
the software can process and the types of supporting files used by the software.

Input files

The following is a brief overview of the input files.

File Description

Job File A job file contains all of your instructions, such as where to find the list(s),
what sort of processing to perform, which reports and outputs to create, and
where to place them. You’ll find information about job files in your program
manuals.

Input database Usually, the input database is a file of names, addresses, and other data. See
Databases that the software can process for more information about the
types of input databases that the software accepts.

Supporting file Most of this manual is about the supporting files and how to create them.
Supporting files are also known as format files and definition files. By
describing the input database, these supporting files help the software to
open and read data from the database.

Database Prep: Guide to Input and Output Files | 3

Output files

The following are the output files that result from processing.

File Description

Output databases Presort can create output databases—that is, databases of processed names
and addresses. Presort creates databases of container and pallet information
in addition to arranging your databases into the presort order you have
chosen. The format and content of output files is up to you.

When the software produces an output database, it automatically creates
supporting files to go with it. This makes it easier to prepare the output of
one software program for input to the next program.

Reports All of the software programs prepare plenty of reports, which document
your job processing results in many different ways. For example, some
reports present statistics for use by your management or your clients; some
are facsimiles of USPS forms for submission with mailings.

Most users instruct the software to save reports in files. You can then read
reports on your screen or send them to your printer. Be sure to check
reports from one process and verify good results before generating reports
for several processes.

Labels Label Studio creates address, container, and pallet labels. You can send the
output directly to your printer, or save it to a disk for later printing.

Work files

During processing, the software programs create work files, which contain statistics and other inform-
ation about your job. Most work files are unreadable except by the software. Consider the following
points about work files:

l Before processing, make sure that you have enough free disk space for the software to create
the work files. In your job file, you can tell the software where to place the work files.

l Sometimes, the software deletes the work files itself after processing. Other times, you must
delete the files yourself.

Database Prep: Guide to Input and Output Files | 4

Databases that the software can process

As shown in the following table, the software programs process the following file types; the soft-
ware also supports file-type conversions. You can input one file type, and output records to a dif-
ferent type of file. For details about conversions, see Convert database types and format.

File type Supporting files
required

For more information, see

dBASE3 Definition (.def)
only

Definition files (DEF)

delim-
ited

Format (.dmt) and
Definition (.def)

Delimited format files for delimited ASCII
Definition files (DEF)

ASCII Format (.fmt) and
Definition (.def)

Format files for fixed-length ASCII and fixed-length EBCDIC
Definition files (DEF)

EBCDIC Format (.ebc) and
Definition (.def)

Format files for fixed-length ASCII and fixed-length EBCDIC
Definition files (DEF)

Note: If you process a database that is not listed above, first consider if the file can be exported or
converted (by other software) to one of the file types that the software does support. Many users do
this, exporting their special files as fixed-length ASCII text. However, the conversion process takes
time and disk space.

Supporting file types

The software works with two types of supporting files: format files and definition files.

Format files

The format file is a physical description of the input data. In this file, you tell the software some very
basic information about each field.

Database Prep: Guide to Input and Output Files | 5

There are three different types of format files that Presort accepts: .fmt, .ebc, and .dmt. For inform-
ation about which databases require format files, see Supporting file requirements.

Purposes of definition files

No matter what type of database you are processing, Presort always requires a definition file. Con-
sider the following points regarding definition files:

l You must specify to Presort what type of database you are processing. Presort cannot determine
the database type itself.

l Presort does not guess field names, so the definition file sets higher-level information about
fields. In this file, you instruct Presort how you want it to interpret and work with your fields.

Definition files contain PW fields mapped to your database; the PW fields act as translators for Pre-
sort. In the definition file, you specify the names of your fields and the names Presort uses for those
fields.

Note: Refer to the Quick Reference for Views and Job File Products for a list of PW fields. This guide
provides details about these fields as well as guidelines for use.

For example, suppose that your database includes a field named ZIP_CODE. Presort does not recog-
nize that name or know what to do with that field. So, in your definition file, you link this field to a
name that Presort does recognize, such as ZIP.

Database Prep: Guide to Input and Output Files | 6

Now Presort knows your ZIP_CODE field by the alias ZIP, and Presort knows what to do with the
field, such as receive a ZIP Code from it or perhaps populate a ZIP Code into it.

Supporting file requirements

The supporting files that you need to create depend on the type of database. The following table
describes the file types and their required supporting files.

File type Supporting files required For more information, see

dBASE3 Definition (.def) only Definition files (DEF)

delimited Format (.dmt) and Defin-
ition (.def)

Delimited format files for delimited ASCII
Definition files (DEF)

ASCII Format (.fmt) and Definition
(.def)

Format files for fixed-length ASCII and fixed-length
EBCDIC
Definition files (DEF)

EBCDIC Format (.ebc) and Defin-
ition (.def)

Format files for fixed-length ASCII and fixed-length
EBCDIC
Definition files (DEF)

Database Prep: Guide to Input and Output Files | 7

Databases that Presort can process
This section provides information about dBASE3 and compatible databases, variable-length, delim-
ited ASCII text files, fixed-length ASCII or EBCDIC text files.

dBASE3 and compatible databases

Presort can process databases produced by dBASE, versions III, III+, and IV. Whenever you must
identify your database type, use dBASE3. By convention, dBASE3-compatible files have the file-
name extension .dbf.

The following database programs are claimed by their manufacturers to be compatible with dBASE3.
To that extent, they should be compatible with the software. Note that we make no warranty about
such compatibility.

l Alpha Three, Alpha Four, and Alpha Five by Alpha Software Corp.

l Clipper by Nantucket Corp.

l FoxBASE and FoxPro by Fox Software

l Quicksilver by Wordtech Systems, Inc.

If you use Microsoft Access, use the Export feature to create a copy of your database that is
dBASE3-compatible. Then run the copy through the software.

dBASE3 features that Presort supports

Presort can read input from dBASE3 files. When producing output, Presort can create a new dBASE3
file or append records to the end of an existing database. Another option, referred to as Input Post-
ing, uses Presort results to update the same file that you input. See the Presort User Guide for
details about Input Posting.

Presort conforms to the file standards of dBASE3. Each record may contain up to 4,000 bytes in up
to 128 fields. Numeric fields cannot exceed 19 bytes. Note that some compatible database programs
produce non-compatible database files. FoxPro, for example, supports some fields that are not sup-
ported by dBASE3. It also allows for more bytes in more fields than dBASE3.

Nondestructive delete markings

Presort supports nondestructive delete markings in any dBASE3 file. Presort automatically ignores
deleted records. Label Studio gives you the option of processing deleted records or ignoring them.

Database Prep: Guide to Input and Output Files | 8

Presort does not support Memo fields. Also, Presort does not work with indexes, so Presort pro-
cesses records in their physical sequence.

dBASE3 input

You do not need to provide Presort with a physical description of the file; in other words, you do not
have to create a format file. Presort receives field name, length, and type information from the
dBASE3 header. (A header is a section at the top of a dBASE3 file, not normally displayed to users.)
However, you are required to provide a supporting definition (DEF) file. For more information, see
Definition files (DEF).

dBASE3 output

Presort can create a new dBASE3 file for output or append processed output records to the end of
an existing database. When you create a new file, you may specify the name, length, and type of
each field, which you will specify in your job file. The following table shows the field type and
length rules. Consider the following field name rules:

l The maximum name length is 10 characters.

l The first character must be a letter.

l The only punctuation mark permitted is the underscore (_).

Database Prep: Guide to Input and Output Files | 9

Field type Length Comments

Character 1-254 Also called alphanumeric. Data is left aligned and right-filled with
spaces.

Numeric 1-19 One byte is reserved for the sign (positive + or minus –), so the
field length is actually 19 plus 1 for the sign. Also, if there is a
decimal point, it will physically occupy 1 byte, and there must be
at least 1 digit to the left of the decimal point.

Not suitable for ZIP or ZIP4 fields, because leading zeroes are
removed (for example, ZIP 07960 would become _7960.

Date 8 Format is yyyymmdd.

Logical 1 May contain T/F or Y/N.

When Presort creates a dBASE3 file, it enforces dBASE3 rules. If your output-file specifications do
not conform to dBASE3 standards, Presort issues an error message.

Presort automatically creates a definition file to go with your new dBASE3 output file; this definition
file contains the database type only. If you are going to use the definition file for input to another
program, remember to include other information before using it. For more information, see Defin-
ition files (DEF).

Database Prep: Guide to Input and Output Files | 10

Variable-length, delimited ASCII text files

In a delimited file, fields or records vary in length. To find where one field or record ends and
another begins, Presort looks for special, separating characters called delimiters. The following illus-
tration shows a few of the most common styles.

Delimiters

The following table contains descriptions of the three types of delimiters.

Delimiter type Description

Record A record delimiter separates one record from another; it is almost always an
end-of-line mark. An end-of-line mark may be a linefeed character or carriage-
return and line-feed pair.

Field A field delimiter separates one field from another. The most common characters
used are either a comma or a tab.

Database Prep: Guide to Input and Output Files | 11

Framing Field-framing delimiters are helpful when there is punctuation within a field that
might be mistaken for a field delimiter. For example, “Manager, Sales.” The
most common framing character is the double-quote. Some programs place
quotes around every field; other programs use quotes only where necessary.

Delimited input

Presort can read input from delimited ASCII files. However, some supporting utilities cannot accept
delimited input, including ZipCount.

You are required to provide two supporting files: delimited format (DMT) and definition (DEF). These
files provide information about how to read the delimited file. The delimited format file is explained
in Delimited format files for delimited ASCII and the definition file is explained in Definition files
(DEF).

By default, Presort expects the most common types of delimiters: carriage return/line-feed between
records, commas between fields, and double-quotes for framing. If your file is different—other char-
acters are used, or one of the delimiter types is not used—then you must inform Presort by spe-
cifying the delimiter characters in your delimited format file. For instructions, see Delimited format
files for delimited ASCII

Presort limits the number of fields per record and the total number of characters per record to
32,767. In theory, you could have one field of 32,767 characters, or 32,767 fields of 1 character each.

The Input Posting feature is not available for delimited input files; in other words, you cannot write
the software results back to a delimited input file. Note that this is possible with all other database
types.

Delimited output

When producing output, Presort can create a new delimited file or append records to the end of an
existing file. When you choose to create a new file, you specify its format through settings in your
job file. You may specify each field, but you may not specify delimiters.

By default, the delimited output file contains carriage return/line feed for record delimiters; commas
for field delimiters; and double quotes for field-framing characters. If you want delimiters other than
the defaults, see Create a delimited file with nonstandard delimiters for instructions.

Presort automatically creates definition and delimited format, and index (IDX) files to go with your
new delimited output file. These supporting files are important if you use the file for input to another
software program. The IDX file is an index that enables other programs to process the database
much more quickly.

Database Prep: Guide to Input and Output Files | 12

Fixed-length ASCII and EBCDIC text files

In a fixed-length file, each field must be the same length in every record, and all records must be
exactly the same length. To find where one field or record ends and another begins, Presort simply
counts characters. The following example shows part of a fixed-length file as seen using a text
editor.

When the data is shorter than the space allotted for it, Presort inserts extra spaces to fill the gap.
Note that in the following example, the dots represent the extra spaces.

Whenever you view a fixed-ASCII or EBCDIC file using a text editor, the fields should line up in neat
columns. If they don’t line up, there may be a flaw in the database itself or an error in the format
information (format file). The following example shows a file with an error in the format information;
notice that the columns aren't lined up.

Database Prep: Guide to Input and Output Files | 13

Delimited vs. fixed-length

If you have a choice of storing your records in delimited or fixed-length format, consider these
points:

l Delimited files require less disk space for the same data, but disk space is relatively inexpensive.

l Delimited files can be much slower to process because Presort must scan for delimiters.

l You cannot post to a delimited input file.

l In a fixed-length file, Presort can simply count characters, which is much faster.

l Some utilities cannot support delimited file types and ASCII files.

Fixed ASCII and EBCDIC input

Presort can read input from fixed-length ASCII and EBCDIC files. You are required to provide two
supporting files, called format and definition. These files provide Presort with information about how
to read the database. For information about format files, see Format files for fixed-length ASCII and
fixed-length EBCDIC. For information about definition files, see Definition files (DEF).

Presort limits the number of fields per record, and the total number of characters per record, to
32,766. In theory, you could have one field of 32,766 characters, or 32,766 fields of one character
each.

Presort can read only printable characters. Presort reads any non-printable characters as blanks or
converts them to some other character or output rather than a blank. There are exceptions to this,
however. For information about these exceptions, see Packed numeric fields and Binary field.

The Input Posting feature is available for fixed-length input files. In other words, you can write Pre-
sort results back to an input file. For more information, refer to the Presort User Guide.

Fixed ASCII and EBCDIC output

When producing output, Presort can create a new fixed-length ASCII or EBCDIC file, or append
records to the end of an existing file. When you choose to create a new file, you may specify the
name, length, and data type of each field. You specify this information in your job file.

Presort automatically creates format files and gives you the option to create definition files to go
with your new fixed ASCII or EBCDIC output file. These supporting files are important if you are
going to use the file for input to another program.

Database Prep: Guide to Input and Output Files | 14

Format files for fixed-length ASCII and fixed-length EBCDIC
This section provides an introduction to format files and guidelines for creating format files. The
chapter also provides information about the FirstPrep program and how to define fields in your
format file.

Introduction to format files

A format file is a physical description of a database. Format files contain information about the
record layout, including each field’s name, length, type, and format.

When you process a dBASE3 file, you do not need a format file; Presort can get format information
from the header that every dBASE3 file contains. However, a format file is required for most other
database types.

Important: In order for the software to correctly read your database, the format file must be accurate.
If you do not define and correct errors in format files, they may cause delays in processing.

Matching input with a format file

A format file is external and is a separate file from the database, so you must help Presort match
each input database to a format file. There are three ways to do this:

l You can make an individual format file compatible with each database that you process. Based
on the name and location of the database, Presort will find the format automatically. Be sure to
place the format file in the same directory as the database. For example, for the database
c:\data\myfile.dat, the format file is c:\data\myfile.fmt.

l If all the databases you process are in the same format, then you can save some time by making
one master format file and applying it to all of your databases. This feature is called Default ASCII
FMT; if the application supports this, look for it in the Auxiliary Files block in your job file.

Database Prep: Guide to Input and Output Files | 15

l Perhaps most of your databases are in standard format, but you may process a few exceptions,
too. In that case, set up a default format file and apply it to the standardized files. For the others,
create individual format files. Where Presort finds an individual format file, it will override the
default format file.

Create format files

Follow these guidelines when you create format files.

Lines

As shown in this example, list fields one field per line in the order that they appear in records. On
each line, type the name, length, and data type of one field; be sure to place a comma between
these items. For more information, see Define fields in your format file.

Spaces and field names

Presort does not require spaces between items; if you use extra spaces, Presort ignores them. Do
not use spaces within field names. Consider the following rules regarding field names.

l Make every field name unique.

l Field names must conform to dBASE3 rules. Maximum name length is 10 characters, which refers
to name length, not field length. The first character must be a letter. The only punctuation mark
that you may use in field names is the underscore (_). You may not use spaces in names.

l Capitalization of field names is optional; however, field names are not case sensitive. For
example, no format file should have both zip and ZIP fields because Presort would consider
these two to be the same fields.

Database Prep: Guide to Input and Output Files | 16

l For your ZIP+4 field, use the name ZIP4, and leave out the plus sign.

l To prevent confusion, you may find it helpful to use the same names for your fields that we use
for PW fields. Definition files use PW fields to translate your database field names and formats
into something that Presort can recognize and process. Refer to the Quick Reference for Views
and Job File Products for a list of field names.

Text files

Format files are small text files. They must contain only ordinary characters, such as printable ASCII.
If you use a word processor to type a format file, be sure to save the format file as straight text, not
as a word processing document.

File name and location

Place the format file in the same directory as the database. For example, for the database c:\data\my-
file.dat, the format file would be c:\data\myfile.fmt.

Define fields in your format file

This section explains how to type the lines of your format file and applies whether you create format
files through the FirstPrep utility or a text editor. To add fields to your fixed-length ASCII or EBCDIC
format file, you must first type the name of the field followed by a comma, the length of the field fol-
lowed by a comma, and the type of field. Note that there may be a fourth element, such as a date
format or a number for decimal point position.

Topoffset field for file header

If there is a header at the top of the file, Presort must skip over this to find the first real record. Add a
topoffset line at the beginning of your format file, along with the length of the header in bytes. Keep
in mind that this field is an exception to the format described above for typing the actual lines of
your format file.

Topoffset is a special name recognized by Presort, so spelling is important. For example:

TOPOFFSET, 1024

Character fields

Character fields may contain any printable letters, numbers, or punctuation marks. Mark character
fields with a "C". For example:

Database Prep: Guide to Input and Output Files | 17

NAME_LINE,30,C

ADDRESS,30,C

CITY,20,C

Numeric fields

Mark numeric fields with an "N". The fourth element in this example is the number of decimal places.
For example:

BALANCE,7,N,2

Date fields

When you set up a Date field, you must also declare its format. Mark date fields with a "D". For
example:

HIRE_DATE,11,D,mmm-dd-yyyy

The default date format is mm/dd/yy.

Format entry Example of data

mm/dd/yy 09/13/14 (default)

mm-dd-yy 09-13-14

mmm-dd-yyyy Sep-13-2014

yyyy-mm-dd 2014-09-13

yy/mm/dd 14/09/13

Consider these points when working with dates in your databases.

l If you have a field that contains a date, use a "D" for date instead of a "C" for character.

l A field that contains a date isn't necessarily a date field unless you use a "D" to set it up as a date

Database Prep: Guide to Input and Output Files | 18

field.

Logical fields

Logical fields represent a True or False, Yes or No value. A logical field should be one byte long.
Your format entry might look like this:

SUBSCRIBER,1,L

Consider these rules regarding Logical fields in ASCII and EBCDIC files:

l When presenting an input file containing a Logical field, that field may contain the letter “T” or
the letter “Y” to indicate a Logical value of True. The software interprets any other value in the
field as a Logical value of False.

l When an ASCII or EBCDIC output file includes a logical field, the software represents a Logical
value of True by placing a character “T” in the output field. The software represents a Logical
value of False with the letter “F”.

l If you use a Logical field in a filter or function (see Filter and function expressions), remember
that you are manipulating Logical values of True and False, not the letters T, F, Y, or N.

For example, if Subscriber is labeled a Logical field in your format file, then this input filter would
work to input only True records:

+ Input Filter (to 512 chars)....= DB.Subscriber

However, the following filter would not work, because you would be comparing a Logical True/False
with the Character-type constant “T”:

+ Input Filter (to 512 chars)....= DB.Subscriber = "T"

Packed numeric fields

Presort marks packed numeric fields with a "P". When you specify a packed numeric field, be sure to
specify the unpacked length. For example:

ACCOUNT,8,P,15

Database Prep: Guide to Input and Output Files | 19

The fourth element is the number of unpacked digits. If you omit this number, Presort assumes that
the number is twice the field length, minus one. A packed numeric field should only contain
integers (no hyphens, slashes, or decimals, for example).

Note: Do not confuse this field type with the IBM packed decimal. When Presort unpacks fields, it
does not insert a physical decimal point. This treatment is acceptable for integer numbers, such as
ZIP Codes; however, do not process any field that contains a true decimal number.

Binary fields

If any field contains unprintable data—characters outside the printable ASCII set—set up that field as
binary type. In your format file, mark binary fields with a "B". For example:

BIT_MASK,16,B

Binary fields do not need to literally contain binary data. Consider the following points about binary
fields:

l Binary fields can be passed through Presort —copied from an input to an output file—undis-
turbed.

l An end of record (EOR) field, which is a mark that may consist of a line-feed character or a car-
riage-return and line-feed pair, should be binary because EOR characters are unprintable (CR and
LF). For example:

EOR,2,B

l Presort cannot process or display a binary field; it can use only printable characters for input data.
When Presort reads data from a binary field and converts it to character data, it converts any
unprintable characters to blank spaces.

Filler fields

When you want Presort to ignore a field, refer to it as "filler". Presort does not process or display filler
fields, so filler is an appropriate field type for confidential fields (salary, for example) or any unused
field.

Each filler field must have a unique name. After the word “filler”, add a suffix of up to four letters or
numbers—for example, filler1, filler2, and so on. Do not be concerned about getting your filler fields
in any particular order; however, be sure to uniquely name each field. For example:

FILLER1234,89,B

Database Prep: Guide to Input and Output Files | 20

If you omit the data-type letter, Presort will by default handle your filler field as binary-type data.

Important: If you are defining filler or binary fields and you are planning to convert your ASCII input
to dBASE3 output, see Binary and filler fields.

End-of-record field (EOR)

Your ASCII or EBCDIC database may contain end-of-record marks. The mark may consist of a line-
feed character, or a carriage-return and line-feed pair. Many ASCII and EBCDIC databases contain
these characters, because without them, records would be difficult to display and read.

If your file contains end-of-record marks, set up a field named "EOR". On DOS systems, the field usu-
ally should be 2 characters long; on UNIX systems, it should be 1 character long. Be sure to use a "B"
for binary when you define the EOR field. For example:

DOS: EOR,2,B

UNIX: EOR,1,B

Presort recognizes the field name EOR. This is important if you use the input-file cloning feature,
then append more fields.

Database Prep: Guide to Input and Output Files | 21

Delimited format files for delimited ASCII
This section provides an introduction to delimited format files and guidelines for creating them. It
also provides information about defining fields in your delimited format file and about setting up the
delimited characters.

Introduction to delimited format files

When you process a variable-length, delimited (DMT) ASCII database, Presort requires a delimited
format file. They are called DMT files because of the file-name extension .dmt assigned to them.

The delimited format file is external, meaning that it is separate from the delimited file itself. The
delimited format file is a physical description of a delimited file and includes information about the
record layout, including each field’s name, type, and format.

Important: For Presort to correctly read your delimited file, the file must be accurate. If you do not
define and correct errors in delimited format files, they may cause delays in processing.

Delimited format vs. format

A delimited format file is similar to a format file. However, consider the following differences:

l In delimited format files, you may define character, date, and numeric fields. However, you may
not use some other field types that are possible in format files, such as: packed numeric, binary,
filler, and EOR.

l In a format file, you must provide the length of each field. In a delimited format file, you should
specify a length because Presort will run faster; however, this is optional. For more information
see Maximum field length.

l In a format file, you can set up a special field called end of record (EOR). In a delimited format

Database Prep: Guide to Input and Output Files | 22

file, it’s managed differently, with a parameter called Record Delimiter.

l You can create format files using the FirstPrep utility, a text editor, or a word processing program.

Create delimited format files

Follow these guidelines when you create delimited format files.

Lines

As shown in this example, list the fields in the order that they appear in your records, one field per
line. On each line, type the name, maximum length (optional), and data type of one field. Some-
times, there is a fourth element, such as a date format or a number for decimal point position. Place
a comma between items.

Spaces and field names

Presort does not require spaces between items; if you use extra spaces, the software ignores them.
Also, do not use spaces within field names. Consider these rules regarding field names.

l Make every field name unique.

l Field names must conform to dBASE3 rules. Maximum name length is 10 characters, which refers
to name length, not field length. The first character must be a letter. The only punctuation mark
that you may use in field names is the underscore (_). Do not use spaces in names.

l Capitalization of field names is optional; however, field names are not case sensitive. For
example, no delimited format file should have both zip and ZIP fields.

l For your ZIP+4 field, use the name ZIP4, and leave out the plus sign.

Database Prep: Guide to Input and Output Files | 23

l Use the same names for your fields that we use for PW fields. Definition files use PW fields to
translate your database field names and formats into something that Presort can recognize and
process. Refer to the Quick Reference for Views and Job File Products for a list of Presort field
names.

Text

A delimited format file is a small text file. They must contain only ordinary characters, such as print-
able ASCII. If you use a word processor to type a delimited format file, be sure to save the delimited
format file as straight text, not a word processing document.

File name and location

Give your format file the .dmt extension and the same base file name as the delimited file that it
describes. Place the delimited format file in the same directory as the delimited file. For example,
the delimited file c:\data\myfile.txt requires the format file c:\data\myfile.dmt.

Define fields in your delimited format file

This section explains exactly how to type the lines of your delimited format file.

Topoffset field for file header

If there is a header at the top of the file, Presort must skip over this to find the first real record. Add a
topoffset line at the beginning of your format file, along with the length of the header in bytes. Keep
in mind that this field is an exception to the format described above for typing the actual lines of
your format file.

Topoffset is a special name recognized by Presort, so spelling is important. For example:

TOPOFFSET, 1024

Character fields

Character fields may contain any printable letters, numbers, or punctuation marks. If you wish, you
can mark character fields with a "C". If you omit the letter, Presort assumes that the field type is char-
acter. Consider the following example:

NAME_LINE,30,C

ADDRESS,30,C

Database Prep: Guide to Input and Output Files | 24

CITY,18,C

The length mentioned in a delimited format file entry is the maximum length. For more information,
see Maximum field length.

Numeric fields

A numeric field is marked with an "N". For example:

BALANCE,7,N

Date fields

When you set up a Date field, you must also declare its format. Mark date fields with a "D". For
example:

HIRE_DATE,11,D,mmm-dd-yyyy

The default date format is mm/dd/yy.

Format entry Example of data

mm/dd/yy 09/13/14 (default)

mm-dd-yy 09-13-14

mmm-dd-yyyy Sep-13-2014

yyyy-mm-dd 2014-09-13

yy/mm/dd 14/09/13

Consider these points when working with dates in your databases.

l If you have a field that contains a date, use a "D" for date instead of a "C" for character.

l A field that contains a date isn't necessarily a date field unless you use a "D" to set it up as a date
field.

Database Prep: Guide to Input and Output Files | 25

Logical fields

Logical fields represent a True or False, Yes or No value. A logical field should be one byte long.
Your format entry might look like this:

SUBSCRIBER,1,L

Consider these rules regarding Logical fields in ASCII and EBCDIC files:

l When presenting an input file containing a Logical field, that field may contain the letter “T” or
the letter “Y” to indicate a Logical value of True. The software interprets any other value in the
field as a Logical value of False.

l When an ASCII or EBCDIC output file includes a logical field, the software represents a Logical
value of True by placing a character “T” in the output field. The software represents a Logical
value of False with the letter “F”.

l If you use a Logical field in a filter or function (see Filter and function expressions), remember
that you are manipulating Logical values of True and False, not the letters T, F, Y, or N.

For example, if Subscriber is labeled a Logical field in your format file, then this input filter would
work to input only True records:

+ Input Filter (to 512 chars)....= DB.Subscriber

However, the following filter would not work, because you would be comparing a Logical True/False
with the Character-type constant “T”:

+ Input Filter (to 512 chars)....= DB.Subscriber = "T"

Maximum field length

When you specify length in a delimited format entry, this is the maximum length. Presort stops read-
ing an input field when it reaches your limit or the field delimiter. In effect, excess input data is
ignored.

Length is optional in delimited format entries. You may omit it if you would like Presort to read entire
fields, regardless of length. However, keep the comma as a placeholder. For example:

NAME_LINE, ,C

Database Prep: Guide to Input and Output Files | 26

BALANCE, ,N,2

HIRE_DATE, ,D,mmm-dd-yyyy

NOTE Be sure to set a maximum field length. If you do not specify a maximum length, Presort
takes more time to process the input file because Presort checks each record to determine the max-
imum length of the field.

Set up the delimiter characters

In a delimited file, there may be up to three types of delimiting characters. These delimiters can be
typed as the very first or very last entry in your delimited format file.

Delimiter type Description

Record A record delimiter separates one record from another.

Field A field delimiter separates one field from another.

Framing Field-framing delimiters are helpful when there is punctuation within a field
that might be mistaken for a field delimiter. For example, “Manager, Sales.”

Defaults

Unless you specify otherwise, Presort assumes that delimited files will have the following delimiters:

Delimiter type Description

Record A line-feed character (UNIX), or carriage-return and line-feed pair (Windows)

Field Comma

Framing Double quotation marks around character-type fields only (no framing around
date or numeric fields)

Database Prep: Guide to Input and Output Files | 27

In other words, the software assumes that delimited files will look something like the following
example.

Custom delimiters

If you use some other character for a delimiter, or don't use a particular delimiter at all, then you
must set one or more of the following parameters in your delimited format files: Record Delimiter,
Field Delimiter, or Field Framing Character.

Consider the following points regarding these parameters:

l You do not need all three parameters. Do not insert a parameter in your delimited format file
unless you really need it. If you insert a parameter but leave it blank, Presort assumes that your
input file does not contain that delimiter. This is explained below.

l In the delimited format file, do not type the delimiting character itself; instead, type its ASCII-
code value. We use ASCII-code values because some delimiters are unprintable characters.

For example, the ASCII code for the <Tab> character is 009. So, when you are processing a tab-
delimited file, place the following line in your delimited format file: Field Delimiter = 009

A table of printable ASCII-code values is shown after this example. If you need to type more than
one code on the same parameter, separate them with a space. The following is an example of a tab-
delimited file.

Turn off a delimiter

You may disable any of the delimiters by leaving the parameter blank. For example, suppose you are
processing a file that does not contain any record delimiters. In other words, there is no line-feed at

Database Prep: Guide to Input and Output Files | 28

the end of each record.

In this situation, you must instruct Presort not to expect that character. Insert the Record Delimiter
line into your delimited format file, but leave it blank. For example:

Record Delimiter =

If you do this, Presort separates one record from the next by counting fields. For example, if you
define five fields in your delimited format file, Presort assumes that the sixth field is the start of the
next record. Do not disable all three delimiters. If you do, Presort will not be able to read your input
file.

Database Prep: Guide to Input and Output Files | 29

ASCII code values

The following table lists printable characters in the lower ASCII set (values 032–126) for the United
States. We also include three frequently used non-printable characters (009, 010, and 013). You may
use other characters in the extended ASCII set. Those characters are not included in this list
because they vary from one computer system to another. Refer to your system manuals for inform-
ation about extended ASCII. A complete list of ASCII characters is included in the Quick Reference
for Views and Job Files Products.

ASCII
value

Description ASCII
value

Description ASCII
value

Description

009 tab 062 > (greater than) 095 _ (underscore)

010 line feed 063 ? 096 ` (accent)

013 carriage return 064 @ 097 a

032 space 065 A 098 b

033 ! (exclamation mark) 066 B 099 c

034 " (double quote) 067 C 100 d

035 # (pound sign) 068 D 101 e

036 $ 069 E 102 f

037 % 070 F 103 g

038 & 071 G 104 h

039 ' (single quote) 072 H 105 i

040 (073 I 106 j

041) 074 J 107 k

042 * (asterisk) 075 K 108 l

043 + 076 L 109 m

Database Prep: Guide to Input and Output Files | 30

ASCII
value

Description ASCII
value

Description ASCII
value

Description

044 , (comma) 077 M 110 n

045 - (hyphen) 078 N 111 o

046 . (period) 079 O 112 p

047 / (forward slash) 080 P 113 q

048 0 081 Q 114 r

049 1 082 R 115 s

050 2 083 S 116 t

051 3 084 T 117 u

052 4 085 U 118 v

053 5 086 V 119 w

054 6 087 W 120 x

055 7 088 X 121 y

056 8 089 Y 122 z

057 9 090 Z 123 {

058 : (colon) 091 [124 | (vertical bar,
pipe)

059 ; (semicolon) 092 \ (backslash) 125 }

060 < (less than) 093] 126 ~ (tilde)

061 = 094 ^ (carat)

Database Prep: Guide to Input and Output Files | 31

Definition files (DEF)
This section provides an introduction to definition files and presents ways to match input with a
definition file. It also provides guidelines for creating definition files and for defining input name
format, and explains how to use PW fields for aliasing.

Introduction to definition files

No matter what type of database you are processing, Presort always requires a definition (DEF) file.
They are called DEF files because of the file-name extension .def assigned to them. Consider the fol-
lowing points regarding DEF files:

l Presort will not guess the database type, so you must tell it what type of database you are pro-
cessing.

l Presort does not guess the field names, so the DEF file sets higher-level information about fields
(you do not need a line for every field that appears in your database file). In this file, you tell Pre-
sort how you want it to interpret and work with your fields.

Definition files contain PW fields paired with fields from your database; the PW fields act as trans-
lators for Presort. You specify in the definition file the names of your fields and the names that Pre-
sort uses for that field.

NOTE Refer to the Quick Reference for Views and Job File Products for a list of PW fields. Note
that some PW fields are specific to certain software products. This guide provides details about
these fields, as well as guidelines for use.

For example, as shown in the example below, suppose that your database includes a field named
ZIP_CODE. Presort does not recognize that name or know what to do with that field. So, in your
definition file, you link this field to a name that the software does recognize, such as ZIP.

Now Presort knows your ZIP_CODE field by the alias ZIP. And Presort knows what to do with the
field—expect a ZIP Code from it, or perhaps write a ZIP Code to it.

Database Prep: Guide to Input and Output Files | 32

Match input with a definition file

A definition file is an external text file, which is separate from the database itself. There are three
ways to help Presort match each input database to a definition file:

l You can make an individual definition file for each database that you process. Presort finds the
definition file based on the name and location of the database.

Give your definition file a .def extension, and the same base file name as the database it describes.
Place the definition file in the same directory as the database. For example, for the database
c:\data\myfile.dbf, the definition file would be c:\data\myfile.def.

l If all the databases you process are in the same format, then use the feature Default DEF to make
one master definition file and apply it to all of your standard databases. Look for this parameter in
your job file.

l If most of your databases are in standard format, but you process a few exceptions, set up a
default definition file and apply it to the standardized files. For the other databases, create indi-
vidual definition files. Where Presort finds an individual definition file, it overrides the default
definition file.

The following example shows a definition file paired with an ASCII format file. Notice how these
files are different and how the definition file turns the physical fields in the delimited format file into
PW fields. Remember, you do not need a line for each and every field that appears in your database
file.

Database Prep: Guide to Input and Output Files | 33

Create definition files

Follow these guidelines when you create definition files.

Database type

The very first line in your definition file is the Database Type parameter. Choose the line from the
following list that is most appropriate for your database type:

Database Type = Dbase3

Database Type = delimited

Database Type = ASCII

Database Type = EBCDIC

Next, list the fields from your input file and their corresponding PW field names, one on each line.
Note that you do not need a line for each field that appears in your database file.

Field definitions

Field definitions look like parameters with the following format: PW field = Database field (including
the prefix “PW.” is optional). For example:

PW.ZIP = ZIP_Code

Definitions may appear in any order; they do not have to match the physical sequence of fields in
the file. However, your definition file may be easier to understand if you keep the name and address
fields in the order they appear in the file layout.

Important: There is an important difference between format, delimited format, and definition files.
Format and delimited format files must contain a specification for each field in the database. If you
omit a field, Presort reads your database incorrectly. In your definition file, you do not need a line for
each field.

Select and define PW fields based on these questions:

1. What data fields does the software need for processing? For example, Presort processes
address fields, so you should include the address fields in your definition file.

Database Prep: Guide to Input and Output Files | 34

2. What common fields will I need for the output database? For example, Presort outputs address
fields such as LOT and LOT_ORDER, so include those fields in your definition file if they exist in
your input structure.

Typing

Presort does not require spaces between items. Presort will ignore them if there are any. Do not use
spaces within field names. Field names are not case sensitive. Presort ignores case in definition
files; however, Presort recognizes casing when defining a field as a constant value, such as
PW.List_ID = “LIST1”, and when filtering on that value.

Text

Definition files are small text files. They must contain only ordinary characters, such as printable
ASCII. If you use a word processor, be sure to save the file as straight text.

Constants

Most of the time, a PW field is based on some database field or perhaps on a combination of fields.
However, there are a few situations when you must define a PW field based on a constant value. A
constant value will always be between quotation marks, as in this example:

PW.List_ID = “RJD”

This means that every time Presort reads a record from this database, it assigns the record to an
Input List defined in Presort as RJD.

Important: Remember that if you ever base a PW field on a constant, put the constant value inside
double quotation marks. If you don’t do this, Presort will think that the value is the name of a data-
base field. Consider this example: PW.List_ID = RJD. If you do this, Presort issues an error mes-
sage stating that it can’t find the RJD field in your database.

You can, however, use PW.List_ID without quotes by using a valid database field name after the
equal sign. This informs Presort to look in that database field and to use the values as List_ID values
set up as Input List Definitions in the Presort job.

Remember, putting List_ID in your definition file does not add a List_ID field to your database. Nor
does Presort record RJD in any field. This field and this value exist only inside Presort’s internal
records.

Database Prep: Guide to Input and Output Files | 35

Punctuation

Presort accepts the set of punctuation marks in definition files as shown:

Symbol Rule

= Place an equal sign between the PW field name and the database field
name:

PW.ZIP = DB.ZIP_Code

Or between a parameter and its setting, as indicated in the following
examples:

Database Type = dBASE3

Name Format = FML

_ The underscore is often used within field names.

“ ” When you need to set a PW field equal to a constant value, place the con-
stant inside double quotation marks.

* If you would like to insert comments in your definition file, begin each line
with at least one asterisk. This signals the software to ignore the line. For
example:

* Use this definition file with all
databases

+ Do not use the plus sign in field names. For example, the ZIP+4 field is
named ZIP4.

Database Prep: Guide to Input and Output Files | 36

Concatenators

Sometimes, you may need to merge two or more database fields into one PW field. When you con-
catenate fields, you have a choice of three methods:

Symbol Rule

& Most often you should use the ampersand. Presort reads the database fields as if
there were exactly one space between them. For example, suppose that you have
written this line in your definition file: last_line = city & state & zip and in
one of your records, the data looks like this (dots represent spaces):

LA•CROSSE••••••••WI54601

When Presort reads this data as the PW field Last_Line, Presort actually receives
this:

LA•CROSSE•WI•54601

If you copy the PW field Last_Line to your output file, or print it on address labels,
then this is what your output will look like:

LA•CROSSE•WI•54601

+ The plus sign may also be used to merge two or more database fields into one PW
field. However, it leaves spaces in place, as they occurred in the input database
fields. If you write this line in your definition file: last_line = city + state +

zip and print the PW field Last_Line on your address labels, you would get this
(from the same example record used above):

LA•CROSSE••••••••WI54601

- The minus sign may also be used to merge two or more database fields into one PW
field. However, it collects all blank spaces at the end. If you write this line in your
definition file: last_line = city - state - zip and print the PW field Last_
Line on your address labels, you would get this (from the same example record used
above):

LACROSSEWI54601•••••••••

Database Prep: Guide to Input and Output Files | 37

Use PW fields for aliasing

Your databases may come from different sources and they probably don’t call each and every field
by the same name because each organization has its own needs and practices. One organization
may refer to a field as “Firm”, while another uses the name “Company”. If you’re processing data-
bases from several sources, you may run into problems with field naming. You need a common set
of field names when it’s time to merge to one output.

Through proper use of PW fields, you can present your databases to Presort as if they were in a uni-
form, recognizable format using a method called field-name aliasing. Here are two approaches to
using PW fields for field-name aliasing:

l Presort recognizes a set of pre-defined PW fields that you can use for aliasing. For example:
PW.Name_Line, PW.Firm, and PW.Address. For a complete list of PW fields, refer to the Quick
Reference for Views and Job File Products.

l If you need an alias that isn't included in our PW set, you can define your own user PW field. Use
the prefix “user:” in your definition file. For example, if you define user:Hire_Date = Date_

of_Hire, then you can work with PW.Hire_Date as you would any other PW field, in posting or in
filters.

The following definition files show how you can use these user-defined PW fields to overcome dif-
ferences between databases. Using these definition files, you could use the following PW fields for
output:

PW.Education, PW.Pay_Scale, PW.Spec_Int, PW.SpouseName,
PW.Hire_Date

Note that the following example databases do not include fields for SpouseName, Spec_Int, and
Hire_Date, so we set the field equal to a blank constant value.

Database Prep: Guide to Input and Output Files | 38

Changes in definition files
This section explains how to choose contents of definition files and follows an input file through the
process. It also illustrates how your choice of PW fields in a definition file changes from application
to application.

Choose contents of definition files

Definition files may change depending on the program you use. If you use a data quality program,
you may need PW fields associated with name information. An address correction program may
require address-type PW fields. The key to choosing the contents of your definition file lies in your
desired results and the function of the individual application. Refer to the Quick Reference for
Views and Job File Products for a complete list of PW fields and information about program dif-
ferences.

This section describes how one database progresses through all of the software programs and how
the choice of PW fields in the definition file correlates with the function of the software.

A single database

First, let’s look at the software system and how it processes a database file. This example uses the
SAP Business Objects products DataRight IQ, ACE, Match/Consolidate, and the BCC Software
products Presort and Label Studio for demonstration purposes.

Database Prep: Guide to Input and Output Files | 39

A single record

The following table shows an individual record being processed by the software. Note that the table
shows only data quality and address because the record won’t physically change in data matching,
Presort, and Label Studio. As the file changes, the DEF file also must change.

Before:
Data Quality

After:
Data Quality

After:
Address Correction

PW.Line1
PW.Line2 WILLIAM MCKAY,
PW.Line3 PRESIDENT
PW.Line4 MCKAY INCORP.
PW.Line5 201 N PEARL
PW.Line6 LA CROSS, WISC
54601
PW.Line7
PW.Line8

Database Prep: Guide to Input and Output Files | 40

Before:
Data Quality

After:
Data Quality

After:
Address Correction

Acct_No 1595
DOB 06/04/65
Soc_Sec 389-83-3809
Phone 608-839-3821
Cen_Tract 102
Own_Hm Y
Subs N
Cr_Rate GOOD
Mar_Stat M
Self_Emp Y

1595
06/04/65
389-83-3809
608-839-3821
102
Y
N
GOOD
M
Y

1595
06/04/65
389-83-3809
608-839-3821
102
Y
N
GOOD
M
Y

Name1
Name2
Title1
Title2
Company
Address
City
State
Zip

Mr. William McKay

Pres.

McKay Inc.
201 N Pearl
La Crosse
WI
54601

Mr. William McKay

Pres.

McKay Inc.
201 N Pearl
La Crosse
WI
54601

Zip4
DPBC
CART
LOT
Lot_Order

3250
01
C018
1234
A

The next several pages show the structure of a multiline input file, the PW fields that make up the
different definition files, and changes to a database as the software processes it.

Database Prep: Guide to Input and Output Files | 41

Follow a database through the software

Data quality

Your data quality program should standardize and parse name and address data and convert mul-
tiple input files into one uniform output. The following diagram shows a multiline input file organ-
ized into a format chosen by the user.

Database Prep: Guide to Input and Output Files | 42

ACE

ACE corrects and standardizes addresses and assigns postal codes. The following illustration shows
how we are inputting the output file from DataRight IQ, cloning the file, standardizing the address
components, and appending postal codes.

Database Prep: Guide to Input and Output Files | 43

Match/Consolidate

Match/Consolidate searches for and eliminates duplicate records. It can either purge the original
input file of duplicates or it can create an entirely new file. The following illustration shows how we
choose to purge our input file of duplicates.

Database Prep: Guide to Input and Output Files | 44

Presort

Presort arranges your database records into packages and containers and produces documentation
shipped to post offices with the mail pieces. Presort does not alter your input records; rather it organ-
izes how the software presents your records to label-printing software.

Database Prep: Guide to Input and Output Files | 45

Label Studio

Label Studio takes Presort’s output file to create address, container, pallet, or generic labels and
prints them in the order specified by Presort.

Database Prep: Guide to Input and Output Files | 46

Output files
This section provides an overview of your output options. Presort offers a lot more output options
than we can discuss here; this section provides only an overview of the most crucial points. For
detailed information about output options, refer to the Presort User Guide.

Set up an output file

Setting up an output file requires you to perform two tasks. The figure in Overview of output file
setup shows an example of these two setups.

1. First, through your entries in the Create File for Output block, you define the format of the new
file.

2. Second, through your entries in the Posting block, you determine the content of information
placed, or posted, in the fields of the output file.

Use one of three methods

For each task, format and content, you have your choice of three methods:

1. You can instruct Presort to automatically create a basic output file. This file is based on the
format and content of another file or files, which is referred to as cloning the format (field lay-
out) and automatic posting of the contents (data).

2. You can turn off the cloning feature and manually specify everything.

3. You can set up a combination of these methods by turning on the cloning features, then adding
your own manual posting. Your purpose in posting manually might be to augment or override
the cloning features.

Setting up an output file is similar to setting up an input file; however, there is a crucial difference.
When you describe to Presort the format of your input file(s), you do so in external supporting files.
When you specify the format of output files, you do so inside your job file, along with all the other
instructions for the job.

Database Prep: Guide to Input and Output Files | 47

Overview of output file setup

The following illustration shows an example job file. For Views users, choose these options in the
View screen.

The following table describes each of the numbered components.

Component Description

1 Output file
name

Set up the file format in the Create File for Output block and the content in the
Post to Output File block. The link between the block files is that they both
refer to the same output file name.

2 Database
type

This entry serves the same purpose as the database-type parameter that you
place in a definition file. It tells Presort which database software to use when
creating the file.

3 Cloning To clone its physical format, type the location and file name of the input file. To
save setup time, you can also clone the physical format of the input file by
using the input file location and file name. If you need to add more fields, you
can specify them manually.

Database Prep: Guide to Input and Output Files | 48

Component Description

4 Manual
formatting

Each parameter specifies the format of one output field; copy and paste the
parameter to create as many parameters as you need. Notice that these entries
look like format file or delimited format entries. In effect, you’re writing a format
file for a database that doesn’t yet exist.

5 Copy input
data

To save setup time, the software can automatically copy the content (data) from
an input file to an output file.

6 Manual post-
ing

Each Copy entry places data into an output field. Notice that each Copy para-
meter in the Posting block corresponds to a Field parameter in the Create File
for Output block.

Set the format of an output database

To set the format of an output database, you can either clone, clone and append, or define your own
format.

Clone

The cloning feature can save you time by creating an output file with the same fields, lengths, and
data types as an existing file. You can clone the format of the (one) input database. To clone, you
turn on a parameter in the Create Output File block inside the job file. The Clone parameter con-
tains the word “copy” instead of “clone” in Views.

Presort can accept more than one input file, so you must select the database format you want to
clone. To clone an existing file’s format, enter that file’s name and location.

Database Prep: Guide to Input and Output Files | 49

The database named here—the one whose format you clone—does not have to be one of the data-
bases that was input for the job. It could be a master database, some kind of template, or perhaps a
file from a previous job. You must provide a definition file and format file for the file to be cloned.

If the master database has a format or file type that is different from the input databases for this job,
see Convert database types and format for tips and details on converting database types.

Note: One of the most common formats cloned is the format of your input file. You can clone your
input file's format and then add on the fields that you want the software to add to your database (see
ACE).

Clone and append

If you clone, you may also append new fields to the end of each record; however, you cannot inter-
sperse new fields among those cloned. Also, the appended fields follow after all fields except the
End of Record (EOR) field. For more information, see End-of-record field (EOR).

To append new fields to the end of each record, turn on the cloning previously shown, then repeat
the Field parameter as many times as necessary to define the added fields. For example, the fol-
lowing ACE job file shows the Create Output File block with both ZIP4 and CART appended to the
fields from the input file:

Database Prep: Guide to Input and Output Files | 50

Define your own format

Perhaps you would like to define a new format for your output file. To do this, turn off cloning and
define all of the fields manually. Now the ACE job file has the copy format turned off and a list of
field names that makes up the complete record in the output file:

Remember, field entries look just like those in an FMT, DMT, or EBC format file. If you want to add
extra fields for later use, that's okay. Technically you can create fields and not have a corresponding
Copy parameter to populate that field.

Database Prep: Guide to Input and Output Files | 51

Place information in an output database

Once you have set up the physical format of your output file, you can place information in the out-
put fields. You can either clone, clone and append, or select the data yourself.

Clone

The cloning feature can save you time copying over input file data to an output file. Using a posting
block, set the clone parameter in your job file using the Output file setup parameter. The following
example shows an ACE job file setup in Views.

Note: In some situations, the clone feature cannot be used. See Convert database types and format.

Clone and append

If you clone, you may also post other information. To do this, set the cloning parameter as above,
then use the Copy parameter to post data manually. For example, as shown in the following
example, the same ACE job file from above now has three appended fields:

Database Prep: Guide to Input and Output Files | 52

Select data yourself

If you would like to take complete control of your output file, turn off cloning and, as shown, use the
Copy parameter to fill all of the fields. The posting destination is always a database field in the out-
put file. The source may be a field from the input file or data generated during processing.

Types of data available for output

The software offers several types of output data. For information about PW, AP, and MD fields, refer
to the Quick Reference for Views and Job File Products.

Four options

You can place the following four types of data into an output file.

Option Description

PW You can copy over a PW field from the input definition (.def) file. Instead of
using database fields, you might use PW fields if you are using them to fix a
field-naming problem. See Use PW fields for aliasing for examples of field-nam-
ing problems.

Use the prefix PW. on your field name. For example, if in your input definition
file you set up the PW field Address, then you can post PW.Address.

AP During processing, Presort produces many data fields called application (AP.)
fields. For example, when you process a record through Presort, you can save
the ZIP+4 code by posting AP.ZIP4 to your output file. Refer to the Quick Refer-
ence for Views and Job File Products for a complete list of AP fields.

Database Prep: Guide to Input and Output Files | 53

Option Description

MD Presort produces MD fields that can be used to populate one or both of the User
Information Line fields in the Mail.dat Container Summary Record (CSM). This
allows users to automatically print the information of their choice on container
labels. For more information about MD fields, see the Quick Reference for
Views and Job File Products as well as the description of the Container User
Information Lines 1–2 parameters in the Job File Reference.

“ “ If you want to place the same data in every output record, you can post a con-
stant value. For example, some users like to place a date stamp on processed
records. You could post today’s date, as a constant value, to a datestamp field.

See Convert database types and format for information about converting a field
from one data type to another, and what to do if your output file type is dif-
ferent from the input file type.

The diagram below shows an example of how these data types function in ACE. Note that this is an
example only; other products work similarly.

Advanced options

Filters and functions are special commands that manipulate and select data or choose records. See
Filter and function expressions for a complete list of functions and how to use them.

Database Prep: Guide to Input and Output Files | 54

Supporting files automatically created with an output database

When Presort creates a database for output, it also creates supporting files. This saves time when
using output from one program as input for another program.

File type Supporting files
required

For more information, see

dBASE3 Definition (.def)
only

Definition files (DEF)

delim-
ited

Format (.dmt) and
Definition (.def)

Delimited format files for delimited ASCII
Definition files (DEF)

ASCII Format (.fmt) and
Definition (.def)

Format files for fixed-length ASCII and fixed-length EBCDIC
Definition files (DEF)

EBCDIC Format (.ebc) and
Definition (.def)

Format files for fixed-length ASCII and fixed-length EBCDIC
Definition files (DEF)

Important: When Presort creates a definition file, it is not complete; the only line that it contains is
the Database Type parameter. However, the automatic definition file does not contain any defin-
itions of PW fields because Presort does not presume how you will want PW fields set up in your
next job.

Before you can use the database as input to another program, you must edit the definition file and
add definitions of PW fields. For instructions, refer to the Quick Reference for Views and Job File
Products.

Database Prep: Guide to Input and Output Files | 55

Filter and function expressions
This section provides information about filter and function expressions and their purpose in pro-
cessing.

Expressions

An expression is a sentence that Presort reads. Expressions contain a special language consisting of
specific words, punctuation marks, and combinations of data. This illustration is an example of a
simple expression:

Presort constructs the elements of an expression so that when it reads the expression, it inserts data
where appropriate, processes and evaluates the expression, and derives with some sort of a result.
The software does this either in the input file or when writing a record to an output file.

Results of an expression

The result controls how the software functions with respect to an individual record or field: either
include or exclude the record in the outcome, or change the record in the manner specified in the
expression. Based on the results you want, you determine whether you want to write your expres-
sion as a filter or a function.

You are able to enhance the control of the software by including expressions in your job file.
However, writing expressions is often very difficult, and the more complicated expressions should
be reserved for your programmers and computer specialists.

Filters and functions

Filters includes certain records and excludes others. The results of a filter are either true or false.
True results include the record in processing, while false results exclude the record.

For example, assume that you have a database of records that contains a list of magazine sub-
scribers, and each record contains a field called Month. You need to compile a list of those records
in which the Month field contains "October." The following example filter includes each record that

Database Prep: Guide to Input and Output Files | 56

contains the value October. Note that the casing of the data is important. OCTOBER is not the same
as October or october.

alltrim(DB.Month) = "October"

To do this, the software looks for the DB.Month field in each record. When found, the alltrim() func-
tion trims any leading and trailing spaces from DB.Month and the software determines if its value is
equal to the constant October.

If the field has the constant October, the software includes that record in posting (True). If the field
does not contain the constant, the software ignores the record and excludes it from posting (False).

Functions

Functions change a record and produce information that can be in the form of mathematical results,
converted data, compared data, new data, extracted data, rearranged data, and tests (True/False).
The record changes in the way specified in the expression.

For example, assume that you have records in a database that include account balances to the exact
penny. You want only even dollar amounts and you want to eliminate the odd cents. The following
function takes a numeric expression and rounds it to the number of decimal places specified.

Round(DB.Balance,0)

To do this, the software looks for the DB.Balance field in each record. When found, the software
changes the record and the result is a rounded number. The result is that 5998.03 is rounded to
5998.00.

Use filters to set criteria

You can base filters on constants, PW fields, database (DB) fields, and application (AP) fields. (In the
Report: Mail.dat block, you can also base them on MD fields.) The following is an example of each
filter type.

Constants

When processing a database in which you want to only include names of senior citizens, you might
use an input filter like the one below. The year function extracts the year, as numerical data, from a
date-type field. The software compares the result with the numerical constant 1944.

For example, if used in 2019, this filter limits the records selected from the input file to contain only
records of people aged 75 years and older.

Database Prep: Guide to Input and Output Files | 57

PW fields

Identify PW fields by adding the prefix PW.; for example, PW.State. This tells the software that it
must look in the definition file for State, not in the database itself.

For example, suppose you want to confine an output list to residents of the state of Texas. You
might use the input filter below, which means that to be included in processing, a record must con-
tain the character string “TX” in the PW field State.

Database (DB) fields

Identify database fields with the prefix DB.; for example, DB.INCOME. This tells the software that it
must look for the INCOME field in the database itself, not in the definition file. For example, you
might limit an output file by setting a minimum income (greater than or equal to $50,000) with the
following input filter. Note that the income would have to be a numeric-type field.

Application (AP) fields

A filter based on an application field uses information generated by the software. Identify applic-
ation fields with the prefix AP.; as in AP.ZIP. In the following example, the filter tells the software not
to output records with a specific ACE-generated ZIP Code.

Database Prep: Guide to Input and Output Files | 58

In this example, we base our filter on ZIP Codes that have been processed by ACE. This way you
can be sure your ZIP Codes are correct because ACE has processed them first, then included in an
output filter using AP.ZIP. Using the AP field ensures that you are using ZIP Codes that are accurate
because ACE generated them.

Data types

You can apply filters and functions to the software fields, database fields, application fields, MD
fields, and constants. In filters and functions, the software supports four data types:

l Character

l Numeric

l Logical

l Date

DB fields may be any of those four types; PW, AP, and MD fields are always character type. You can
type a character, numeric, or logical constant; to create a date-type constant, see the ctod() function
in the List of functions.

When you base a PW field on a date-type database field, the data is standardized to a yyyymmdd
string. When you base a PW field on a logical-type database field, the software converts the data to
a character: T, Y, F, or N.

Operator words for combining functions

You may find that you often need more than one test in your filters. Depending on the product, you
can assemble tests up to a total filter length of 512 characters. To combine tests, use the following
three operators:

l .AND.

l .OR.

l .NOT.

You can type these words in uppercase or lowercase; however, don't forget the periods at the begin-
ning and the end of the operators.

.And.

When you combine two tests together with .AND., a record must pass both tests to be included,
which may reduce the number of records that pass the filter. For example, the following filter would

Database Prep: Guide to Input and Output Files | 59

set both a minimum income and minimum age. The income field must contain a number greater
than or equal to $50,000, and the year of birth must be 1957 or earlier.

db.income >= 50000 .AND. year(db.birth) <= 1957

.Or.

When you combine two tests together with .OR., the software includes a record if it passes either
test, which tends to allow more records to pass the filter. For example, the following filter includes
residents of both New York and New Jersey.

PW.State = “NY” .OR. PW.State = “NJ”

.Not.

The .NOT. operator reverses the truth or falsehood of the test that follows it. For example, the fol-
lowing filter would exclude records in which the AP.ZIP field was not equal to 54601. Note that you
may prefer to use the exclamation mark (!) instead of .NOT.

.NOT. AP.ZIP=“54601”

Nested functions

Nesting combines more than one function to achieve the results you want on your database. The fol-
lowing example shows a nest of three functions:

third_function(second_function(first_function(data)))

Reading nested functions

When reading a nested function (or expression), the software begins with the right-most function
and goes to the left-most function (starting with the innermost parenthesis and continuing outward).
It performs the first function; then it performs the second function on the results of the first, and so
on.

When you write a nested function, keep in mind how the software interprets an expression; then
examine your objective and divide that objective into separate tasks. Those tasks become the func-
tions that make up the complete nested function.

The following table shows how the software reads this function:

Database Prep: Guide to Input and Output Files | 60

left(upper(alltrim(PW.Last_Name)),3)

In the table, note that the dots shown in the data represent spaces and are for illustrative purposes
only. For more information about reading and writing functions, see Example functions.

Step Function Result

First alltrim(PW.Last_Name) The software eliminates spaces from the
left and right of the data: ...Johnson...
changed to Johnson.

Second upper(result of
alltrim)

The software changes the data from
mixed-case to uppercase: JOHNSON

Third left(result of upper,
3)

The software returns the three leftmost
characters of the last name: JOH

Example functions

Example 1

Let’s assume that you want to select a range of ZIP Codes. Consider the following example data:

Function + Input Filter (to 512 chars) = val(DB.ZIP)>=54600
.and.

val(DB.ZIP)<54900

Explan-
ation

The function val() will convert character data into numeric data enabling the use of
the >= and < operators. The operator .and. requires that both tests must be true for
the record to be included.

Results Records with ZIP Codes ranging from 54600 to 54899.

Database Prep: Guide to Input and Output Files | 61

Example 2

To select all ZIP Codes within 546, you could choose one of the following:

Function + Input Filter (to 512 chars) = val(substr
(DB.ZIP,1,3))=546

Explan-
ation

The substr() portion tells the software to start in the first position of the DB.ZIP field
and go for a length of 3 characters. To make the expression equal to a number (in
this example, 546) the DB.ZIP field has to be in numeric form (it is in character form
in the database). The val() function converts the DB.ZIP into numeric data so that it
can be compared to 546. The result would have to be 546 in order to be included in
the record.

Results Records with ZIP Codes starting with 546.

If you didn't want to convert your data into numeric form, you could use this function:

Function + Input Filter (to 512 chars) = substr(DB.ZIP,1,3)
="546"

Explan-
ation

This function eliminates the requirement for the ZIP data to be in numeric form by
making the function equal to the constant "546".

Results Records with ZIP Codes starting with 546.

Example 3

Let’s assume that you want to add a series of zeros to numbers in a character-type field so that each
field is the same length. To do so, choose one of the following:

Function Copy (source, destination) = right("000000" +
alltrim(DB.Account),6),field

Explanation The alltrim() function will make sure that all spaces are eliminated from the right
and left of the field. The right function will take the 6 rightmost characters
(spaces, numbers or letters) and return them as a 6-character string.

Database Prep: Guide to Input and Output Files | 62

Results •••1••• to 000001

•••234• to 000234

•2•••• to 000002

207••• to 000207

••328•• to 000328

••20•• to 000020

Or

Function Copy (source, destination) = right(" " +
alltrim(DB.Account), 6), field

Explanation The right() function in this example will simply right-align the number taking the
rightmost characters. Instead of returning zeros, the function will return blanks.

Results •••1••• to ••••••1

•••234• to ••••234

•2•••• to ••••••2

207••• to ••••207

••328•• to ••••328

••20•• to •••••20

Example 4

This example presents a lengthy nested expression that performs a seemingly simple task. Let’s
assume that you want to post a name in one field and an 8-digit account number in another when
the field contains both on the same line.

This expression extracts the account number from Line1 and places it in the Acct_No field.

Content in Line1 is: Larry James 10625975

Database Prep: Guide to Input and Output Files | 63

Function Copy (source, destination)=

iif(isdigit(right(alltrim(DB.Name),1)),

right(alltrim(DB.Name),8),""), Acct_No

Explanation l alltrim trims spaces from the DB.Name field.

l right returns the rightmost character from the trimmed DB.Name field (5).

l isdigit returns T (True) if the rightmost character is a number.

l If True is returned, right extracts the rightmost eight characters from a
trimmed DB.Name. If False is returned, Acct_No is left empty.

Result Acct No 10625975

This expression extracts the name and places it in the Name field.

Content in Line1 is: Larry James 10625975

Function Copy (source, destination)=
iif(isdigit(right(alltrim(DB.Name),1)),
left(DB.Name,(len(alltrim(DB.Name)–8)),DB.Name),

Name

Database Prep: Guide to Input and Output Files | 64

Explanation l alltrim trims spaces from the DB.Name field.

l right returns the rightmost character from the trimmed DB.Name field (5).

l isdigit returns T (True) if the rightmost character is a number.

l len returns the length of a trimmed DB.Name.

l –8 subtracts 8 characters from the length.

l If True is returned, left extracts the first n left characters (length –8); in other
words, everything except the last 8 characters.

l If True is not returned, the complete DB.Name field is returned.

True Result Name Larry James

Other operators

Operators are punctuation marks or symbols for arithmetic or testing.

Arithmetic

Symbol Function Example

* Multiplication 3 * 2 = 6

+ Addition 3 + 2 = 5

- Subtraction 3 - 2 = 1

/ Division (no % modulus available; see mod(num-
ber,number).

3 / 2 = 1.5

Database Prep: Guide to Input and Output Files | 65

String concatenation

Symbol Function Example

& Concatenate strings, removing all leading and trailing
spaces from both.

“ a “ & “b ” returns “a
b”

+ Concatenate strings, leaving leading and trailing blank
spaces where they are.

“a ” + “b ” returns “a
b ”

- Concatenate strings, collecting all trailing blank spaces at
the end.

“a ” - “b ” returns “ab
”

Comparison

Symbol Function Example

< Less than 3 < 2 returns .F.

<= Less than or equal to 3 <= 2 returns .F.

> Greater than 3 > 2 returns .T.

>= Greater than or equal to 3 >= 2 returns .T.

<> Not equal to 3 <> 2 returns .T.

= Is exactly equal to 3 = 2 returns .F.
“a “ = “ab” returns .F.
“a “ = “a” returns .F.

$ Is contained in or is a subset of “a” $ “ab” returns .T.
“a “ $ “ab” returns .F.

Miscellaneous

Symbol Function Example

! Not !.T. returns .F.

Database Prep: Guide to Input and Output Files | 66

Symbol Function Example

() Precedence is the order in which operations are per-
formed

List of functions

The following functions are listed in alphabetical order and are summarized. Data types are number,
char (for character), date, log (for logical), or expr (expression) when more than one type is valid.
Expressions may be field names, constants in double quotation marks, or another function.

abs(number)

This function converts a numeric expression to its absolute value and returns a positive number or a
zero. For example, when the BALANCE field contains a lesser value (like 2000) than the LIMIT field
(containing 3000), the following expression would still result in a positive number (1000):

abs(DB.Balance - DB.Limit)

abs(2000 – 3000) = 1000

alltrim(char)

This function trims leading and trailing spaces from a character expression and returns the
remainder as a character string. For example:

alltrim(DB.City)

When the DB field City contains “…Philadelphia…”, the software returns the character string “Phil-
adelphia”.

asc(char)

This function returns the ASCII value (a number between 0 and 255) of the leftmost character in a
character expression. Use it when you need to do arithmetic on the ASCII value of a character. The
subject “character” is case-sensitive. For example, the following expression would result in the num-
ber 66:

asc(“B”)

Database Prep: Guide to Input and Output Files | 67

For a list of ASCII characters and their numerical values, see ASCII code values.

at(char, char)

This function searches for the first character expression within the second and, if it is found, returns
the starting character position as a number. For example, the following would return the number 6
when DB.Name is “Jones, Scott.”

at(“,”,DB.Name)

If the substring is not found, at returns “0”. If all you need to know is whether or not an expression is
present, use the “$” operator listed under Comparison.

at(“,”,DB.Name)

If the substring is not found, at returns “0”. If all you need to know is whether or not an expression is
present, use the “$” operator as described in Comparison.

cdow(date)

This function converts a date expression to a day-of-the-week name (DOW) and returns any of the
capitalized character strings, (“Sunday,” “Monday,” etc.).

For example, cdow(DB.Anniv_Date) is converted to "Monday" when the database field Anniv_
Date contains “04/12/04”.

chrtran(char
1
, char

2
, char

3
)

This function translates char
1

using char
2

and char
3

as a search-and-replace table and operates only
on individual characters. If any character in char

1
is found in char

2
, then the software replaces the

char
1

character with the character from char
3

that is in the same position as the character found in
char

2
. If there is no replacement character in char

3
, then the software removes the character from

char
1
.

For example, suppose we’re processing a Name field in which a slash character separates names
from titles. We want to convert this to a blank space when posting Name to an output file. The out-
put posting would be as follows:

Copy(source,destination) = chrtran(DB.Name, “/”, “ ”), Name

If there is no replacement character in char
3
, then the software removes the character from char

1
. So

you can use chrtran() to delete a character.

Database Prep: Guide to Input and Output Files | 68

NOTE If one of the characters that you want to remove is a double quotation mark, then you must
place it inside single quotation marks. You may set up a more complex search-and-replace table by
entering more than one character in char

2
and char

3
.

IMPORTANT Remember that chrtran() works on individual characters only, so be careful to count
character positions within these two strings. For example, if you have a field called DB.Keycode that
contains numbers from 1–9, and you want to replace those numbers with letters, your output posting
would look like this:
Copy(source,destination) = chrtran(DB.Keycode, “123456789”,
“ABCDEFGHI”), keycode

This would replace a Key Code number like “5183” with “EAHC”.

chr(number)

This function interprets the number as an ASCII value and returns the corresponding character and
is opposite of the asc() function. For example, the following would post carriage-return and line-feed
characters:

Copy (source, destination) = chr(13) + chr(10), EOR

For a list of ASCII characters and their numerical values, see ASCII code values.

cmonth(date)

This function converts a date to a month name and returns any of the capitalized character strings
(“January,” “February,” etc.). For example, the following would be converted to “October” when the
database field Anniv_Date contains “10/04/2004”:

cmonth(DB. Anniv_Date)

ctod(char)

This function converts a character expression in the American format (mm/dd/yyyy or mm/dd/yy) to a
date value. For example, if DB. Anniv_Date is a character field, the following returns the field’s con-
tents as date-type data:

ctod(DB. Anniv_Date)

This enables you to compare this date with other date-type data such as the following:

date() = ctod(DB.Anniv_Date)

Database Prep: Guide to Input and Output Files | 69

date()

This function returns the current date (according to your computer’s time-of-day system) as a date-
type value. The function accepts no input (argument) from you, so do not type anything between
the parentheses. Returns a date with the format: YYYMMDD.

day(date)

This function extracts the day of the month from a date expression and returns it as an integer
numeric value. For example, the following example gives the number 17 when Birth_Date contains
“07/17/2004”:

day(DB. Birth_Date)

deleted()

This function tests the input record to determine if it is marked to be deleted. The software returns a
logical True (.T.) if deleted; otherwise, False (.F.). For example, you could use the following output fil-
ter to divert deleted records into a separate output file, based on their delete status in the input file.

+ Output Filter (to 512 chars)........ = deleted()

NOTE You can use the deleted() function in an input filter. However, many programs prefilter
deleted records, so a deleted record would never be presented to your filter.

dow(date)

This function extracts the day of the week from a date and returns it as an integer numeric value
from 1 to 7 (Sunday = 1, Monday = 2, ... Saturday = 7).

For example, on January 1, 2001, dow(date()) takes the date from the computer's time-of-day clock,
determines the day of the week (Monday), and converts that day to the number 2.

dtoc(date)

This function converts a date-type value to a character string in the American format (mm/dd/yyyy).
Note that if the input date does not include the century, the software assumes the current century.

Database Prep: Guide to Input and Output Files | 70

For example, the following expression returns the character string “10/04/2004” when Anniv_Date
contains “10/04/04”:

dtoc(DB.Anniv_Date)

Compare this function with dtos(). Note that this function is opposite of ctod().

dtos(date)

This function converts a date-type value to an 8-character string in the format yyyymmdd. Compare
this function with dtoc().

If the input date does not include the century, the software assumes the current century. For
example, the following expression returns the character string “20041004” when Anniv_Date con-
tains “10/04/04”:

dtos(DB. Anniv_Date)

empty(char)

This function returns a logical True (.T.) if the character expression (usually a field) is empty or filled
with spaces or tabs. This function returns False (.F.) if it contains data. For example, the following
expression returns a logical True when the application field AP.Group_No is empty:

empty(AP.Group_No)

iif(logexpr, expr
2

, expr
3

)

With this function, if the logical expression is True, the second expression is returned; otherwise,
the third expression is returned. For example, suppose we want to post Occupant to the Name field
if that field is empty:

Copy (source, destination).. = iif(empty(DB.Name),
“Occupant”,

DB.Name), Name

NOTE The returned expressions may be of any data type, and they do not have to be of the same
data type.

Database Prep: Guide to Input and Output Files | 71

int(number)

This function converts a numerical expression to an integer by truncating (not rounding) all digits to
the right of the decimal point. Compare this function with round().

For example, the number 3 results from:

int(3.9)

However, the number 4 results from:

round(3.9, 0)

isalpha(char)

This function returns a logical True (.T.) if the character expression begins with a letter (A to Z or a to
z), and returns a logical False (.F.) if it begins with any other character. The following expression
should be True:

isalpha(PW.First_Name)

isdigit(char)

This function returns a logical True (.T.) if the character expression begins with a number (0 to 9) and
returns a logical False (.F.) if it begins with any other character. For example, the following filter
might be used to exclude Canadian records:

+ Filter (to 512 chars)........ = isdigit(DB.Postcode)

islower(char)

This function returns a logical True (.T.) if the character expression begins with a lower-case letter (a
to z) and returns a logical False (.F.) if it begins with any other character.

For example, the following expression would return a logical False (.F.) if DB.City is Madison
because the name begins with an upper case letter:

islower(DB.City)

Database Prep: Guide to Input and Output Files | 72

isupper(char)

This function returns a logical True (.T.) if the character expression begins with an upper-case letter
(A to Z) and returns a logical False (.F.) if it begins with any other character.

For example, the following expression would return a logical True (.T.) if the city is Madison because
the name begins with an upper case letter:

isupper(DB.City)

left(char, number)

This function extracts from a character expression the leftmost number characters, and returns this
as a character string. For example, the following expression returns the first 13 characters of the PW
field City:

left(PW.City, 13)

len(char)

This function returns the length of a character expression as a numerical value. For example, the fol-
lowing expression trims leading and trailing spaces before measuring the length of the city name:

len(alltrim(PW.City))

When the PW field City contains "…Philadelphia…..", the software returns number 12.

lower(char)

This function converts a character expression to lowercase and returns it as a character string. For
example, the following expression returns the character string “t.s. eliot”:

lower(“T. S. Eliot”)

Database Prep: Guide to Input and Output Files | 73

ltrim(char)

This function trims leading spaces from a character expression and returns the remainder as a char-
acter string. For example:

ltrim(PW.City)

When the PW field City contains “…Philadelphia…..”, the software returns the character string “Phil-
adelphia…..”.

max(number,number)

This function compares two numeric expressions and returns the larger one as a numeric value.
Note that this function is the opposite of min().

For example, the following expression compares the numeric database field Cred_Limit with the
value 500, and returns whichever is the larger amount:

max(DB.Cred_Limit, 500.00)

min(number, number)

This function compares two numeric expressions and returns the smaller one as a numeric value.
Note that this function is the opposite of max().

For example, the following expression compares the numeric database field Balance with the value
0, and returns whichever is the smaller amount:

min(DB.Balance, 0.00)

mod(number,number)

This function divides the first number by the second, and returns the remainder (modulus) as a
numeric value. For example, the following expression returns the number 2 (44 divided by 3 is 14,
with a remainder of 2):

mod(44,3)

Use this function to give you every x record number. For example, the following expression gives
you every 4th record in a database.

mod(recno(), 4) = 0

Database Prep: Guide to Input and Output Files | 74

month(date)

This function extracts the month from a date expression and returns it as an integer numeric value
from 1 to 12; it is useful for staggering output files by months.

For example, the following expression would limit an output to those born in September:

month(DB.Birth_Date) = 9

proper(char)

This function converts a character expression to mixed-case (also called initial capitals). For
example, the following expression returns “Micron Electronics Inc” when the PW field Firm contains
“MICRON ELECTRONICS INC”.

proper(PW.Firm)

NOTE This function does not accept acronyms or other capitalization exceptions. The software
coverts all words the same way. For example, proper() returns "Ibm Corp" when the input is “IBM
Corp”.

recno()

This function returns the current record number as an integer numeric value. Use it to post the input
record number to an output file for trace-back and to limit input to a portion of the file.

For example, you could use the following expression to confine an output file to the second 1,000
records:

+ Input Filter (to 512 chars)........ = recno() > 1000 .and.
recno() <= 2000

Note: This filter is slower to process than using the input range parameters.

replicate (char, number)

This function repeats a character expression a specified number (number) of times and returns it as a
character string; the number must be an integer. For example, the following expression would insert
8 spaces in a designated field:

replicate(“ ”, 8)

Database Prep: Guide to Input and Output Files | 75

right(char, number)

This function extracts the rightmost number characters from a character expression, and returns it as
a character string. The number must be an integer.

NOTE This function ignores significant characters and extracts trailing blanks, if any are present.
Consider using rtrim() first:
right(rtrim(DB.Suite), 3)

round (number, number)

This function rounds the first numeric expression to the number of decimal places specified in the
second and returns a numeric value. Compare this function with int(), which truncates.

For example, the number 4 results from round(3.992385, 0). But the number 3.99 results from
round(3.992385, 2). To round before the decimal point, the number must be an integer, but may
be negative. For example, the number 120.0 results from round(123.456, -1).

rtrim(char)

This function trims trailing spaces from a character expression and returns the remainder as a char-
acter string. For example, when the PW field City contains “…Philadelphia…..”, the following expres-
sion returns the character string “…Philadelphia”:

rtrim(PW.City)

space(number)

This function returns a character string consisting of a number of blank spaces. For example, the fol-
lowing function would yield 30 blank spaces:

space(30)

Database Prep: Guide to Input and Output Files | 76

span(char, char)

This function returns, as a numeric value, the index of the last character in string 1 that is present in
string 2.

For example, the following expression would return the number 3, because the first three characters
of string 1 are also present in string 2. The fourth character of string 1 is the first one that does not
exist in string 2.

span("edcTbaM","abcdefg")

NOTE This function is case-sensitive.

str(number, [len,[decimal]])

This function converts a numeric expression to a character string that is left-aligned and includes
decimal digits, decimal point, and minus sign (if any). You can specify the length of the returned
string and the number of decimal places (both numeric). If you omit the length, the software
assumes 10 characters.

If you specify length, but not decimal, the software rounds the value to an integer. For example, the
following expression converts the numeric-type database field “12.85” to a character string 8 char-
acters long, with 5 significant digits, a decimal point, and 2 decimal places (the dots represent
spaces):

str(DB.Number, 8, 2) returns “…1 2 . 8 5”

substr(char, start [,length]

This function extracts a substring from the character expression, beginning at character position
start (a number) and continuing to the end, unless you specify a numeric length.

For example, the following expression extracts the exchange “788” from the 10-digit telephone num-
ber field 6087888700:

substr(DB.Phone, 4, 3)

Compare this function with functions left() and right().

time()

This function returns the current time (according to the computer’s time-of-day clock) as an 8-char-
acter string in the format hh:mm:ss. Hours are in a 24-hour format.

Database Prep: Guide to Input and Output Files | 77

translated()

This expression returns the number of non-Latin-1 characters that are converted to Latin-1 with the
Unicode to Latin-1 table.

unassigned()

This expression returns the number of non-Latin-1 characters that are either illegal or unassigned. An
unassigned character is one that has a numeric value greater than 255 for which there is no value
specified in the Unicode to Latin-1 table.

upper(char)

This function converts a character expression to uppercase and returns it as a character string. For
example, the following expression returns “IBM CORP” when the PW field Firm contains “IBM Corp”:

upper(PW.Firm)

val(char)

This function converts a character expression to a numeric value, and stops when it encounters a
second decimal point or a non-numeric character. For example, the following expression converts
the character-type field AP.List_Cnt into numeric data:

val(AP.List_Cnt) + Output filter = val(AP.List_Cnt) <= 2

year(date)

This function extracts the year from a date expression and returns it as an integer numeric value. For
example, the following expression extracts the year of graduation:

year(DB.Grad_Date)

If the date format for DB.Grad_Date is mm/dd/yyyy, the software returns the yyyy portion.

Database Prep: Guide to Input and Output Files | 78

Summary of functions by purpose

The following table lists each of the functions according to its purpose.

Purpose Description Function

Arithmetic Perform division and return the remainder mod()

Convert data ASCII value to character

Character mm/dd/yy or mm/dd/yyyy to date

Character string to lowercase

Character string to UPPERCASE

Character string to mixed-case

Character to ASCII value

Character to numeric

Date to character mm/dd/yyyy

Date to character yyyymmdd

Numeric decimal to integer by truncation

Numeric decimal to n decimal places (or integer) by rounding

Numeric to absolute value

Numeric to character string

chr()

ctod()

lower()

upper()

proper()

asc()

val()

dtoc()

dtos()

int()

round()

abs()

str()

Compare Select the larger of two numbers

Select the smaller of two numbers

max()

min()

Database Prep: Guide to Input and Output Files | 79

Purpose Description Function

Provide data Character repeated n times

Current date from time-of-day clock

Current time from time-of-day clock

n spaces

Number of current record, from input file

replicate()

date()

time()

space()

recno()

Extract Day of the week from date (Sunday, Monday, ... Saturday)

Day-of-the-month numeric from date (1, 2, ... 31)

Day-of-the-week numeric from date (1, 2, ... 7)

Leftmost n characters from string

Month name from date (January, February, ... December)

Month numeric from date (1, 2, ... 12)

Range of characters from string

Rightmost n characters from string

Year numeric from date

cdow()

day()

dow()

left()

cmonth()

month()

substr()

right()

year()

Fit and trim Trim leading and trailing spaces from a character expression

Trim leading spaces from a character expression

Trim trailing spaces from a character expression

Measure the length of a character expression

alltrim()

ltrim()

rtrim()

len()

Database Prep: Guide to Input and Output Files | 80

Purpose Description Function

Substrings Where is character expression 1 located within expression 2?

Search a string for one character and substitute another

How many characters in expression 1 are within expression 2?

Is character expression 1 located within expression 2
(True/False)?

at()

chrtran()

span()

$

Test Is the input record marked to be deleted?

Does expression contain any data other than spaces?

Test, if True, return expression 1; if False, return expression 2

Does expression begin with a letter (A–Z or a–z)?

Does expression begin with a number (0–9)?

Does expression begin with a lowercase letter (a–z)?

Does expression begin with a capital letter (A–Z)?

deleted()

empty()

iif()

isalpha()

isdigit()

islower()

isupper()

Database Prep: Guide to Input and Output Files | 81

Convert database types and format
This section explains how to convert files from one type or format to another and provides solutions
to common problems in database design. It provides information about the following:

l Input and output fields and data types

l How to convert ASCII and EBCDIC input to dBASE3 output

l How to convert dBASE3 input to ASCII output

l How to create a delimited file with nonstandard delimiters

Input files with different formats

Assume that you have rented three lists for an upcoming promotion; we’ll call them A, B, and C.
Each list comes from a different source, and each one has a different format. Consider the following
format files:

As an example, here’s how the same data would look in those three formats:

The problem

As you look at the previous examples, notice that the files are different in two ways. First, they break
down the data into fields differently. Second, even when they’re entering the same information into

Database Prep: Guide to Input and Output Files | 82

a field, they call it different names (ZIP versus ZIP_Code). This will cause problems when you start
designing address labels.

To print information on all labels, the printing labels need common field names; you must present
these formats to the software as if they were the same. If the formats are not common, you will
receive a warning and get blank lines on your labels. All three files could go through a conversion
process by physically converting them to one format; however, there is an easier, faster way.

The solution

By setting up the definition files as shown in the following example, you can make the files appear
to the software as though they were in the same format.

Where one file breaks down finer than another, we have to combine the fields; this has been called
the “lowest common denominator” approach. And we need to adjust the field names, possibly giv-
ing them aliases.

The result

Now the software can work with four PW fields, no matter which input database a record happens to
come from: Name_Line, Line1, Line2, and Last_Line.

For example, in Label Studio, it will be the PW fields that we will place on the label layout, not the
original database fields. The following table is an example of the label output.

PW fields Potential output

PW.Name_Line John Q. Public VP Sales

PW.Line1 Suite 55

PW.Line2 100 Vine St

PW.Last_Line Shoreview MN 55126

Database Prep: Guide to Input and Output Files | 83

Input and output fields and data types

Preserve the data type

If you want output fields to match the data types of the input, the easiest way is to use the cloning
features, as explained in the previous chapter. If for some reason you can’t use the cloning features,
and you need to specify your output file manually, then you need to be careful about data types.

For example, suppose you input a packed numeric field called ACCT_NUM. If you want to preserve
the field as a packed numeric, ensure that your output field is that type. In your job, the setup might
look like this:

Then post the field as follows, copying it straight from the input to the output database:

Convert the format automatically

Suppose that your input database is dBASE3, but you want an ASCII output file (fixed or delimited).
In dBASE3, the format of date fields is yyyymmdd. However, in your ASCII output file, you want the
format dd/mmm/yyyy. In other words, 20040720 would become 20/Jul/2004.

In your job, when setting up the format of your output file, you will not be able to use the cloning
feature. If you did, the date format of output would be the same as input. Instead, you must tell the
software the format you want for all output fields. The setup of the date field might look like this:

Field (name,length,type,misc) HIRE_DATE,9,D,dd/mmm/yyyy

However, when it comes to posting—placing information into the fields of your output file—then you
can use one of two methods:

Database Prep: Guide to Input and Output Files | 84

l Copying from the input file using the cloning feature (ensure that the input and output field
names are the same), or

l Manual posting using a posting command in your job. For example: Copy (source, des-
tination)... = DB.HIRE_DATE, HIRE_DATE

When the software copies over your HIRE_DATE field, it automatically converts the data to match
the format of the output field.

Convert the data type automatically

The software also converts data types in some situations. For example, suppose you’re running ACE
and you import a packed numeric field called ZIP9. If you use the cloning feature, your output ZIP9
field will also be a packed numeric.

However, the 9-digit ZIP Code assigned by ACE is character-type data. As shown in the following
example, ACE converts it automatically if you post it directly to a packed numeric field.

Copy (source, destination)... = AP.ZIP9, ZIP9

The same is true if the output field is numeric, whether the output file is ASCII or dBASE3.

Convert with a function

Some data-type conversions the software cannot perform automatically (see the examples on the fol-
lowing pages). This is something to consider, especially when you are converting from one file type
to another. In these situations, you can use functions to convert your data.

Convert via PW fields

Let’s return to the packed-numeric input field called ACCT_NUM. In your output database, you want
to expand this data and convert it to be a character-type field. One way to convert it would be to
handle it as a PW field:

1. In your definition file, define ACCT_NUM as a user-defined PW field. The software auto-
matically converts the data to character type. The definition entry looks like this:

USER.ACCT_NUM = DB.ACCT_NUM

2. In your job, when you set the format of your output file, include a character-type field named ACCT_NUM:

Field (name, length, type, misc)... = ACCT_NUM,13,C

Database Prep: Guide to Input and Output Files | 85

Note: The length must be the unpacked length. For example, the Acct_Num packed-numeric length is
seven. Calculate the unpacked length this way: 2 X 7 – 1 = 13. (The 13 is the length defined in the above field
parameter).

For more information, see Packed numeric fields (dbase) and Packed numeric fields (fmt).

3. Then post the field as follows:

Copy (source, destination)... = PW.ACCT_NUM, ACCT_NUM

Convert ASCII and EBCDIC input to dBASE3 output

For the most part, ASCII-to-dBASE3 conversion is trouble-free. The same holds true for EBCDIC-to-
dBASE3. However, some problems are caused by differences in data types.

Packed numeric fields

The software accepts the packed numeric field in your fixed-ASCII or fixed-EBCDIC input file;
dBASE3 can handle numeric, but not packed numeric. You should not use format cloning; instead,
manually declare a dBASE3 numeric field of adequate length to handle the unpacked numbers. You
can easily figure adequate length by using the following:

2 (packed field length) – 1

If you use format cloning, the software creates a dBASE3 numeric field equal to the packed length
of your input. Then, the software copies the unpacked number into this too-short field.

Binary and filler fields

You can use binary and filler fields in fixed-ASCII and fixed-EBCDIC, but not in dBASE3. The soft-
ware issues an error message if the following three conditions exist:

l Your input file includes any binary or filler fields

l You ask the software to convert your output to a dBASE3 format

l You attempt to use the cloning features

The software issues an error message because it cannot determine what to do with the binary-type
input fields. They can’t be cloned because they are illegal in the dBASE3 output file. However, there
is one exception: If your input fixed-ASCII or fixed-EBCDIC file includes a binary-type EOR field, the

Database Prep: Guide to Input and Output Files | 86

software will not issue an error message. The EOR field is not necessary in a dBASE3 file and is
dropped.

One way to preserve your filler fields is to declare them as character-type data in your format file.
The format file entry might look like this:

Filler1, 28, C

Note that filler fields can be character-type. Binary is the default data type for filler fields, but it is not
required. If your filler field contains any bytes that are unprintable characters in the ASCII set, the
software converts them to spaces in the output file.

Logical fields

Some ASCII and EBCDIC databases contain a character-type field that works like a logical field; the
field either contains some special character as the “Yes” or “True” value, or is blank to indicate “No”
or “False.”

This situation is common when a database has been exported to ASCII or EBCDIC text. For example,
suppose you manage custom databases that the software can’t read directly, so you export to fixed
ASCII. When you export, the software converts logical-type fields to 1-byte, character-type fields. An
asterisk in this field is equivalent to a logical True, and an empty field equals a logical False.

If you’re in this situation, you have two options: The easier one is to simply carry over the field as a
single character. You can do this using the cloning features, if you like.

More effort is required if you want to convert to a true dBASE3 logical-type field because you can-
not simply post the field directly from an ASCII-character input field to dBASE3-logical output field.
Instead, you must use a function, in your posting, to test the character data and return a logical True
or False.

For example, suppose your ASCII input file includes a character-type field called PAID_UP. (This
field contains an asterisk if the customer’s subscription is current; or it is blank if the account is
expired.) In your dBASE3 output file, you want PAID_UP to be a logical-type field. The following illus-
tration shows how this example might be set up in your job. For more information about functions,
see Filter and function expressions.

Database Prep: Guide to Input and Output Files | 87

Delete field

Some ASCII and EBCDIC files contain a 1-byte, character-type, DELETE field to mimic nondestructive
delete marking. You can carry over such a field as a character-type field. However, you cannot set
the hidden delete byte in dBASE3 output records. It would take some dBASE3 programming and
post processing of your output file to delete records based on the value in the character-type
DELETE field.

Convert dBASE3 input to ASCII output

If you input dBASE3 and output ASCII (either fixed-length or delimited), consider the following
points.

Delete mark

All of the software programs—except ACE—ignore input records that the software marks for dele-
tion. With ACE and Label Studio, you have the option to process and output deleted records.

However, the software does not automatically preserve the dBASE3 delete mark in the ASCII output
file. If you want to preserve the deleted status of your output file, you must manually set up an out-
put field (Deleted) and use the following posting expression:

Copy (source,destination) = iif(deleted(),"*",""), DELETED

Note: To use the non-destructive delete mark in your ASCII file, you must define PW.Delete in the
DEF file.

End-of-record mark

The dBASE3 records do not contain an end-of-record field; be sure to add this to your ASCII output
records. If you do not, the output file may be hard to work with.

Database Prep: Guide to Input and Output Files | 88

In your job, be sure to append a field named EOR and post to it either a line-feed character (UNIX),
or the carriage-return/line-feed pair (Windows). For example, the job setup looks like this:

Create a delimited file with nonstandard delimiters

When you create a delimited output file, you may specify its format through settings in your job file.
However, you may not specify delimiters in your job file. The software uses the default delimiters:

l Carriage return/line feed between records

l Commas between fields

l Double quotation marks for framing around character-type fields (no framing on date or numeric
fields)

The software uses the default delimiters even if you are cloning a file that contains other delimiters.
For example, cloning a tab-delimited file results in a comma-delimited output file. However, there is
a different method for those who require delimiters other than the defaults. Perform the following
steps before you start the software processing:

1. Go to the directory where you want the software to create the output file.

Here, you will create supporting files for an output database that does not yet exist. To make
this procedure clear, let’s suppose that the output file will be named example.dat.

2. Create an empty file named example.dat with a text editor.

Press the space bar or the enter key, then save and exit the file.

3. Create a definition file named example.def.

The only line you really need in this file is this: Database Type = delimited

Database Prep: Guide to Input and Output Files | 89

4. Create a delimited format file named example.dmt.

Fill out this file completely, specifying all the fields that you want in your records. You must spe-
cify the maximum field length for each field that you list in your delimited format file. For more
information, see Delimited format files for delimited ASCII.

If you want to clone the input, you can copy the input file’s .dmt to example.dmt.

5. Add to your delimited format file, as necessary, parameters to select the delimiters:

Record Delimiter =

Field Delimiter =

Field Framing Character =

For example, suppose you want tabs between fields, instead of commas:

Field Delimiter = 009

Remember, you do not need all three parameters. Do not insert a parameter in your delimited
format unless you really need it. If you insert a parameter but leave it blank, the software
assumes that you are turning off that delimiter.

6. When you set up your job file, do not include a Create File for Output block for the file. Your
specifications for the output file are not contained in the job file, as usual, but in the external
files that you created. However, your job file must include the block for posting information to
the output file. That posting block will mention the database name example.dat. Be sure to set
the Existing File parameter to Append.

7. Run the job. The software posts the data to the example.dat file that you created. In the posting
block, instruct the software to overwrite/replace the existing file.

Database Prep: Guide to Input and Output Files | 90

Additional Resources
The following resources are available to help you with your software.

Documentation Updates Available Online

Presort documentation is updated on a regular basis and available in PDF format via the
BCC Software Customer Portal. Documents are posted in the Manuals & Quick Guides ⇨ section of
the portal—except for release notes, which are available in the Presort section of the Product Down-
loads ⇨ page.

You can access the most current versions of Label Studio documentation from the following links:

l Label Studio User Guide ⇨

l Label Studio Inkjet Reference ⇨

l Label Studio Release Notes ⇨

l System Administrator Guide ⇨

l Edjob User Guide ⇨

l Quick Reference for Views and Job Files ⇨

l Views Quick Start Guide ⇨

l Database Prep Guide ⇨

Knowledge Base

BCC Software offers tips, tricks, and best practices for using our products. Knowledge Base articles
can help empower both experts and new users.

l To learn more, visit the BCC Software Knowledge Base on the BCC Software Customer Portal ⇨.

How to Contact Support

l BCC Software Technical Support online:
https://bccsoftware.com/customer-center/customer-support/ ⇨

l Email: support@bccsoftware.com ⇨

https://portal.bccsoftware.com/Support/techManualsProduct.aspx?tm=presort
https://portal.bccsoftware.com/profile/productdownloads.aspx
https://portal.bccsoftware.com/profile/productdownloads.aspx
https://docs.satorisoftware.com/us/ls/docs/labelstudio_userguide_ss.pdf
https://docs.satorisoftware.com/us/ls/docs/labelstudio_inkjetref_ss.pdf
https://docs.satorisoftware.com/us/ls/rn/labelstudio_relnotes_ss.pdf
https://docs.satorisoftware.com/us/cmxp/docs/sysadminguide_ss.pdf
https://docs.satorisoftware.com/us/cmxp/docs/edjob_usersguide_ss.pdf
https://docs.satorisoftware.com/us/cmxp/docs/quickref_views_ss.pdf
https://docs.satorisoftware.com/us/cmxp/docs/views_quickstart_ss.pdf
https://docs.satorisoftware.com/us/cmxp/docs/databaseprep_ss.pdf
https://portal.bccsoftware.com/support/knowledgeBase.aspx
https://bccsoftware.com/customer-center/customer-support/
mailto:support@bccsoftware.com

	Introduction
	Presort
	Label Studio

	Input files and input file results
	Input files
	Output files
	Work files

	Databases that the software can process
	Supporting file types
	Format files
	Purposes of definition files
	Supporting file requirements

	Databases that Presort can process
	dBASE3 and compatible databases
	dBASE3 features that Presort supports
	Nondestructive delete markings
	dBASE3 input
	dBASE3 output

	Variable-length, delimited ASCII text files
	Delimiters
	Delimited input
	Delimited output

	Fixed-length ASCII and EBCDIC text files
	Delimited vs. fixed-length
	Fixed ASCII and EBCDIC input
	Fixed ASCII and EBCDIC output

	Format files for fixed-length ASCII and fixed-length EBCDIC
	Introduction to format files
	Matching input with a format file

	Create format files
	Lines
	Spaces and field names
	Text files
	File name and location

	Define fields in your format file
	Topoffset field for file header
	Character fields
	Numeric fields
	Date fields
	Logical fields
	Packed numeric fields
	Binary fields
	Filler fields
	End-of-record field (EOR)

	Delimited format files for delimited ASCII
	Introduction to delimited format files
	Delimited format vs. format

	Create delimited format files
	Lines
	Spaces and field names
	Text
	File name and location

	Define fields in your delimited format file
	Topoffset field for file header
	Character fields
	Numeric fields
	Date fields
	Logical fields
	Maximum field length

	Set up the delimiter characters
	Defaults
	Custom delimiters
	Turn off a delimiter

	ASCII code values

	Definition files (DEF)
	Introduction to definition files
	Match input with a definition file
	Create definition files
	Database type
	Field definitions
	Typing
	Text
	Constants
	Punctuation
	Concatenators

	Use PW fields for aliasing

	Changes in definition files
	Choose contents of definition files
	A single database
	A single record

	Follow a database through the software
	Data quality
	ACE
	Match/Consolidate
	Presort
	Label Studio

	Output files
	Set up an output file
	Use one of three methods

	Overview of output file setup
	Set the format of an output database
	Clone
	Clone and append
	Define your own format

	Place information in an output database
	Clone
	Clone and append
	Select data yourself

	Types of data available for output
	Four options
	Advanced options

	Supporting files automatically created with an output database

	Filter and function expressions
	Expressions
	Results of an expression

	Filters and functions
	Functions

	Use filters to set criteria
	Constants
	PW fields
	Database (DB) fields
	Application (AP) fields
	Data types

	Operator words for combining functions
	.And.
	.Or.
	.Not.

	Nested functions
	Reading nested functions

	Example functions
	Example 1
	Example 2
	Example 3
	Example 4

	Other operators
	Arithmetic
	String concatenation
	Comparison
	Miscellaneous

	List of functions
	abs(number)
	alltrim(char)
	asc(char)
	at(char, char)
	at(“,”,DB.Name)
	cdow(date)
	chrtran(char1 , char2 , char3)
	chr(number)
	cmonth(date)
	ctod(char)
	date()
	day(date)
	deleted()
	dow(date)
	dtoc(date)
	dtos(date)
	empty(char)
	iif(logexpr, expr2 , expr3)
	int(number)
	isalpha(char)
	isdigit(char)
	islower(char)
	isupper(char)
	left(char, number)
	len(char)
	lower(char)
	ltrim(char)
	max(number,number)
	min(number, number)
	mod(number,number)
	month(date)
	proper(char)
	recno()
	replicate (char, number)
	right(char, number)
	round (number, number)
	rtrim(char)
	space(number)
	span(char, char)
	str(number, [len,[decimal]])
	substr(char, start [,length]
	time()
	translated()
	unassigned()
	upper(char)
	val(char)
	year(date)

	Summary of functions by purpose

	Convert database types and format
	Input files with different formats
	The problem
	The solution
	The result

	Input and output fields and data types
	Preserve the data type
	Convert the format automatically
	Convert the data type automatically
	Convert with a function

	Convert ASCII and EBCDIC input to dBASE3 output
	Packed numeric fields
	Binary and filler fields
	Logical fields
	Delete field

	Convert dBASE3 input to ASCII output
	Delete mark
	End-of-record mark

	Create a delimited file with nonstandard delimiters

	Additional Resources
	Documentation Updates Available Online
	Knowledge Base
	How to Contact Support

